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ABSTRACT

The velocity gradient tensor equation is modelled
in probability phase space with a linear approxima-
tion for the diffusion term and a diagonal isotropic
model for the pressure Hessian. This formulation re-
sults in a closed equation system for the velocity gra-
dient invariant evolution. The resultant local topol-
ogy for the flow kinematics is similar to known results
of numerical experiments. In particular, the well es-
tablished tendency for the intermediate strain rate
eigenvalue to be positive in isotropic homogeneous
turbulence is predicted by this model.

INTRODUCTION

Velocity gradients contain information on the rates
of rotation, stretching and angular deformation of
infinitesimal material lines, surfaces and volumes.
These are distinctive fluid flow mechanisms, which are
essential in a broad range of important phenomena
such as the propagation of material and non mate-
rial surfaces. Vortex stretching by velocity gradients
is also fundamental to the investigation of vorticity
dynamics and turbulent kinetic energy generation.

The internal intermittency of turbulence is also
connected to strongly non-Gaussian velocity gradi-
ent statistics. This statistics implies high probability
of large values of the velocity derivatives or, equiva-
lently, a spotty distribution of regions with large am-
plitude of velocity gradients.

Villiefosse (1982) investigated the inviscid veloc-
ity gradient transport equation by neglecting the off-
diagonal elements of the pressure Hessian. With these
crude approximations the tendency of the vorticity
to align with the intermediate strain rate eigenvector

and its local increase without limit in finite time is
explained. Chong et al. (1990) classify the topol-
ogy of fluid motions in terms of the three invariants
of the velocity gradient tensor, which completely de-
termine the dynamic system associated to a local ori-
gin, which in a Lagrangian frame is a critical point.
Analogous invariants can be defined for the strain-
rate tensor and the rate of rotation tensor associated
with the vorticity. Chen et al. (1990) have studied
the dissipative scales of mixing layers in compress-
ible and incompressible cases in terms of the three
invariants using DNS (Direct Numerical Simulation)
and suggested a phenomenological relation between
the second and the third. Cantwell (1992) has found
an analytical solution to Villiefosse model equation in
terms of Jacobian elliptic functions and obtained the
asymptotic behaviour of vorticity and rate of strain,
using the invariants of this last tensor in order to
explore the small scale flow structure. Soria et al.
(1994) have studied the characteristics of plane tur-
bulent mixing layers with different initial conditions
using DNS and have analysed the velocity gradient
tensor and strain-rate topologies for each case, finding
highly localised regions in the invariant scatter-plots.

MODELLED EQUATION FOR THE VELOCITY
GRADIENT TENSOR

The evolution equations for the velocity gradient
tensor components g;; = Ou;(z,t)/0z; in a La-
grangian frame following the fluid particle in homoge-
neous isotropic turbulence with constant density are
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The conditional time derivative of g;; is defined by
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the following conditional average
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Where Gij is the associated variable in the cor-
responding probabilistic phase space to the physical
variable g;;.

Taking the conditional averages of the terms in eq.
(1), it becomes
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The first term on the right hand side of eq. (3)
is the velocity gradient self-straining/rotation. The
two conditional averages correspond to the pressure
Hessian and viscous diffusion. These need to be mod-
elled in order to close this equation in terms of the
G; variables.
The pressure term is modelled by a local isotropy
approximation (Dopazo et al. (1993)). The result is
analogous to Villiefosse (1982)
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For the diffusion term a linear model, Linear Mean

Square Estimation (LMSE), is used (Dopazo et al.
(1993))
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Where the constant wy is a “diffusion frequency”,
the inverse of a presumed diffusion characteristic time
of the velocity spatial derivatives.
Substituting both models in eq. (3) the evolution
of the components of the velocity gradient tensor in
probabilistic phase space is given as

dGij
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This resulting set of deterministic equations consti-
tute a dynamic system of eight independent variables
because of the incompressibility condition G;; = ().
Furthermore, the model preserves zero mean for each
component, ((G;;) = 0), for all time.

The divergence of the velocity field, dG;;/dt =
G"ij, in phase space results in

B

3Gy
i.e. a negative, constant value of —9wy is obtained.
Thus the system (6) is dissipative, with constant con-
traction of volume with time in phase space.

= —9uwp < 0, (7)

EVOLUTION OF THE INVARIANTS AND RE-
SULTS

The characteristic equation of a second order ten-
sor Gy; is

N+PXLQA+R=0 (8)

where A stands for the eigenvalues (real or complex)
of the tensor and P, (), R are the invariants, defined
by

P=-Gi
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Here Gij is the velocity gradient tensor. Its in-
variants determine, through the eigenvalues, the lo-
cal topology of the motions in the flow near the ori-
gin considered as a critical point (see Chong et al.
(1990) for details). In the incompressible case P is
zero, and () and R reduce respectively to the traces
of the square and cube of the tensor with adequate
factors.

The real or complex character of the eigenvalues is
given by the sign of the discriminant D defined, when
Fi= ). 7as

R2 Q3
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In the general solution of the cubic algebraic equa-
tion (8) the three roots are real when D) < 0. When
D > 0 two are conjugated complex and one is real.
Then, for the incompressible case, the null discrimi-
nant curve D = 0 divides the QR plane in two re-
gions: One below the curve with real eigenvalues and
other above the curve with one real and two conju-
gated complex ones.

Taking the time derivatives of ) and R in defi-
nition (9), and substituting the proposed model (6)
for the time derivative of Gij , yields a closed, self-
consistent system of equations for the evolution of the
invariants.

Q = —-3R — 2w
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This dynamic system is non-linear due to the Q>
term in the equation for R

The discriminant evolution can be found by taking
the time derivative of eq. (10) and replacing the in-
variant derivatives (11). The solution of the resulting
equation is

D(t) = D(t=0) exp { —6uwot} (12)



This result implies that there is no sign change in
the discriminant. Therefore, the eigenvalue character
(real or complex) of the velocity gradient is the same
all the time. )

The system (11) has two fixed points (Q = 0, R =
0):

P, =(Q1=0, R;=0)
P, = (Q2=-3wj, Ra=2uw})

both of them lying on the curve D = 0. The asso-
ciated Jacobian matrix has in P; two negative eigen-
values, and in P one positive and one negative. This
implies that the former is a stable node and the later
is a saddle. Figure 1 shows the behaviour of dynamic
system (11). The trajectories near the fixed points
can be seen in detail in Figure 2. Pj is a stable node
at the origin to which all the near trajectories tend to.
P, is a saddle point on the right branch (R > 0) of
the null discriminant curve. This point attracts close
trajectories towards the curve and deviates them to
the origin or to infinity.

Therefore, using model (6) the velocity gradient
tensor evolves towards a configuration with two equal
positive eigenvalues and one negative in the real case.
This implies a saddle/saddle/unstable node topology
corresponding to a flow expanding in two spatial di-
rections and contracting in the third.

In the complex case, R >0 produces a configura-
tion with one negative real eigenvalue and two com-
plex with positive real part which corresponds to a
topology of unstable focus/contracting. In this case
this means rotation with increasing radius in a plane
and contraction along the third axis.

Figure 3 shows a scatter plot of invariants @ and
R at the final time of their evolution using model
(11) from an initial Gaussian velocity gradient distri-
bution. This result is similar to that of Soria et al
(1994) found in mixing layer simulations.

CLOSING REMARKS

The rate-of-strain, i.e. the symmetric part of the
velocity gradient tensor, has always three real eigen-
values which, for the incompressibility, sum zero.
Thus the largest is positive, the smallest negative and
the intermediate can be positive or negative. The
above description of the resulting topology for the
velocity gradient with the proposed model implies for
the strain rate more probability of having two positive
eigenvalues and one negative than the other possibil-
ity (two negative and one positive). This is a well
known feature of homogeneous turbulent field in nu-
merical and experimental published results.

The equations obtained by Cantwell (1992) for the
invariant evolution in the inviscid case can be derived
from the present model by neglecting wg. The result
is

Q= -3R
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With this last system invariants move in phase
space along constant discriminant trajectories. The
only fixed point in Cantwell’s result is a degenerate
saddle in the origin and all trajectories go to infin-
ity along the right branch of null discriminant curve.
This behaviour, shown in figure 4 is similar to the
eq. (11) for high and moderate amplitudes, while for
smaller initial values of the invariants the model (11)
is convergent, due to the stable node in the origin.
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Fig. 3. Scatter plot of R-Q system at the final time of

the evolution using the LMSE meodel from an initially
Gaussian velocity gradients distribution.

Fig. 1. R-Q Trajectories in phase space using the
LMSE model for the diffusion of velocity gradients
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Fig. 2. R-Q Trajectories from LMSE formulation Fig. 4. Trajectories in R-Q phase space with the
(solid line) near the critical points (circles), system of Cantwell (1992) for the inviscid case.

and D=0 curve (dashed line)



