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ABSTRACT

A generalised formulation is applied to imple-
ment the quadratic upstream interpolation (QUICK)
scheme, the second-order upwind (SOU) scheme and
the second-order hybrid scheme (SHYBRID) on non-
uniform grids. The accuracy and efficiency of these
higher-order schemes on non-uniform grids are as-
sessed. Three well-known bench-mark problems are
revisited using non-uniform grids. These are: (1)
heat transport in a recirculating flow; (2) 2D Burg-
ers’ equations; and (3) a 2D lid-driven cavity flow.
The known exact solutions of these problems make it
possible to thoroughly evaluate accuracies of various
uniform and non-uniform grids. Higher accuracy is
obtained for fewer grid points on non-uniform grids.
The order of accuracy of the schemes examined is
maintained for some test problems if the distribution
of non-uniform grid points is properly chosen.

INTRODUCTION

Extension of higher-order convection schemes to
non-uniform Cartesian grids is conceptually easy.
However, the coefficients can be rather complex. Dif-
ferent forms of the schemes on non-uniform grids can
be found in the literature. It is desirable to imple-
ment a number of higher-order schemes in a CFD
code and to choose an “optimum” one for a particu-
lar flow problem. Li and Rudman (1995) presented
a generalised formulation for four- point discretisa-
tion schemes on non-uniform grids. The central dif-
ference (CD) scheme, QUICK, SOU and SHYBRID
fall within this formulation. There is a need to as-
sess accuracy of higher-order schemes on non-uniform
grids, but little work has appeared in the literature.
On non-uniform grids, many schemes lose their or-
der of accuracy, as may be shown by performing a
truncation error analysis. Lack of detailed numerical

experiments on this aspect gives rise to lack of confi-
dence in using higher-order schemes on non-uniform
grids. The higher-order schemes can also be imple-
mented in a computational space with uniform grids
which is transformed from a physical space. However,
the influence of grid sizes on the accuracy is again in-
troduced by the discretised metric coefficients. The
objective of this paper is to assess accuracy and effi-
ciency of higher-order schemes on non-uniform Carte-
sian grids.

GENERALISED FORM OF FOUR HIGHER-ORDER
SCHEMES

The nomenclature here is the same as that in Li and
Rudman (1995). The detailed implementation of the
method can be found in Li and Baldacchino (1995).
In Fig. 1, the grid-related sizes 6;,, (1 =1,2,and 3)
take different meanings when the velocity at the local
face changes its direction.

The following geometrical parameters are defined:

& = 61w ; .6 - 'Shu + 62\0
b 81w + 82w’ tw baw — 61w
_ 62w " - '521.u + 63‘\.0

Gaw = 61?." + 62w, .621# - 63111 K 611.:: (1)

The generalised scheme can be summarised as

Fidw = (Q2w¢W Ea o‘-'lwq'sP - qng)F:
+ (o1wéw + c2ubp — qudp)FS (2)

where

¢w = ép — Pauwdw + Prudww
¢p = dw — B2uwdp + Pruds (3)

The scheme parameters g, take the appropriate
forms for different schemes. For CD, ¢, = 0; for
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Figure 1: GRID SYSTEM WITH GRID RELATED PA-
RAMETERS IN THE z-DIRECTION,

SOU, g, = @1w; and for QUICK,
6211:
= —a 4
4 baw + 3w o ()

and for the second-order hybrid scheme (SHYBRID),
if the local Peclet number Pe, = 0, g, = 0; if
Pe,, #£ 0, then

i
oy RO, iy, 5
g max] ay |Peu_.|] (8)

RESULTS OF THE TEST CASES

Heat Transport in a Recirculating Flow
The problem of Beier et al. (1983) with an exact
solution (Fig. 2) presents two important flow fea-

tures in practical problems, namely recirculation and
a temperature boundary layer. The problem involves
a recirculating flow in a heated cavity with the upper
surface of the cavity being adiabatic, and the left and
bottom surfaces being defined by a varying tempera-
ture profile.
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Figure 2: EXACT SOLUTION OF TEMPERATURE
FIELD FOR THE FIRST TEST PROBLEM.

Three grid configurations each with four different
grid sizes are used: a uniform grid, a non- uniform

grid consisting of two uniform sections (non-uniform
grid 1), and a stretched grid (non-uniform grid 2); see
Fig. 3 for the two non-uniform grids. The results are
plotted in Fig. 4 for each grid configuration.
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Figure 3: FOUR GRID SIZES OF THE TWO NON-
UNIFORM GRIDS FOR THE FIRST TEST PROBLEM.

The higher-order schemes are consistently superior
to first-order upwind (FOU). It is notable that higher-
order schemes maintain higher than first order accu-
racy on all non-uniform grids studied here. SOU dis-
plays significantly less accuracy than SHYBRID and
QUICK, although it is notably superior to its first-
order counterpart. It is also notable that SHYBRID
does yield a better result to QUICK on the finest non-
uniform grid 1. By comparing CPU times (not shown
here) required for the first two grids, it can be seen
that the non-uniform grid solutions are more efficient.

Two-dimensional Burgers' Equations
By using the Cole-Hopf transformation, Fletcher
(1983) constructed an interesting exact solution of the

two-dimensional Burgers’ equations. We use an exact
solution with a severe internal gradient (Fig. 5). Five



grid configurations are used, each with four grid sizes
(Fig. 6). The relative accuracy and CPU time spent
on each scheme for all the grids are summarised (not
shown), and the RMS errors of the u-component for
each scheme are also plotted in Fig. 7.

The nature of the solution renders particularly ap-
propriate for use with non-uniform grids. It is clear
that higher accuracy is maintained for fewer grid
points on non-uniform grids, which also results in less
CPU time. By plotting the error distribution of the
u -solution on uniform and non-uniform grids (not
shown), it is found as expected that grid refinement
using non-uniform grids reduces the error in the re-
fined region.

In Fig. 7, a downward shift in the RMS profile
as the grid in the larger-gradient region is refined,
could indicate a gain in solution accuracy using fewer
grid points. For FOU, this is true at a large num-
ber of grid points, but not true at a small number of
grid points. But for the higher-order schemes QUICK
and SHYBRID, this is true at a small number of grid
points and not true at a large number of grid points.
For SOU the results are different and complex. With
a very large grid-aspect ratio :—:"‘_”;—f: of 0.0625 in
non-uniform grid 4, the solution accuracy does not
improve compared to non-uniform grid 3. For very
large numbers of grids tested, even a grid-aspect ra-
tio of 0.25 in non-uniform grid 2 does not give any
better results for QUICK and SHYBRID. The impor-
tance of these results can be seen from the fact that
in most engineering calculations, coarse grids are gen-
erally used. The results discussed above imply that
non-uniform grid, together with higher-order schemes
such as QUICK and SHYBRID, can be a useful ap-
proach. The detailed analysis of the influence of grid-
aspect ratios can be expected to provide guidance for
the behavior of non-uniform grids applied to real fluid
flows.

Lid-driven Cavity Like Flow

This flow with an artificially designed body force,
whose exact solution was constructed by Shih et al.
(1989), is qualitatively similar to the classical lid-
driven cavity flow. Shih et al . (1989) obtained a
numerical solution only for v = 0.1, since a central
difference scheme was used. Solutions are obtained
here for v = 0.001. Two grid configurations are used,
namely a uniform grid and a non-uniform grid consist-
ing of two uniform sections in the vertical direction.
The solutions are summarised in Table 1.

Even though the use of higher-order schemes im-
proves the solution accuracy, the higher-order accu-
racy of SOU, SHYBRID and QUICK is not main-
tained. The solution accuracy on non-uniform grids
with higher-order schemes is better than that with
FOU. It appears that QUICK and SOU predict a bet-
ter pressure gradient than SHYBRID. The results in-
dicate the complexity of numerical prediction in flow
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Uniform FOU QUICK SOU SHYBRID

20 x 20 || 4.745E-2 | 4.433E-2 | 5.758E-2 | 4.678E-2

40 x 40 (| 2.808E-2 | 2.462E-2 | 2.130E-2 | 2.737E-2

80 x 80 | 2.224E-2 | 2.100E-2 | 2.035E-2 | 2.173E-2

Non-U FOU QUICK SOU |SHYBRID

20 x 16 || 5.330E-2 | 5.253E-2 | 6.018E-2 | 5.286E-2

40 x 30 || 3.089E-2 | 2.948E-2 | 2.606E-2 | 3.224E-2

80 x 60 || 2.374E-2 | 2.441E-2 | 2.380E-2 | 2.515E-2

Table 1: RMS ERRORS OF %5 FOR THE LID-DRIVEN
LIKE FLOWS.

problems. The reason for loss of order of accuracy of
higher-order schemes is unknown to the authors. It
may be hypothesised that this is due to the use of
FOU at near-boundary points. Application of FOU
at near-boundary points in the previous two problems
studied did not result in a great loss of order of ac-
curacy. The reason that it happens in the cavity flow
problem here may be due to the elliptic behaviour of
pressure.

CONCLUSION

Overall, higher accuracy is obtained for fewer grid
points on non-uniform grids. It is confirmed that
the order of accuracy of the schemes examined here
can be maintained if the non-uniform grid points are
properly chosen to be in small-variation regions of
the dependent variables, and the grid-aspect ratio is
small. The application of a first-order upwind scheme
at near-wall points does not result in a great loss of
order of accuracy for all the convection-diffusion prob-
lems, but seems to do so for the cavity flow problem,
which requires further investigation.
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