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ABSTRACT

Based upon the operator splitting method designed
by the author to solve Navier-Stokes equations with
variable density and viscosity, a segregated time march-
ing solution scheme is proposed for solving the low-
Mach-number flow model with the acoustic waves being
filtered out. This solution scheme does not rely on the
correction for global mass conservation to mantain solu-
tion accuracy. With this advantage, the scheme can be
directly applied to general low-Mach-number flow prob-
lems with confidence.

The scheme is validated by comparing the results for
a number of test cases with known exact solutions and
published numerical solutions by other authors.

GOVERNING EQUATIONS

By separating pressure p into a thermodynamic part
pr which is spatially uniform and a hydrodynamic part
pa, the non-dimensionalized governing equations for

low-Mach-number flows can be written in the following
form (see [2],[3]):

Navier-Stokes equation:
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where

Z=Inp and W(Z,u) = —[%+(ro)Z]

The notations used here are: Pr—Prandtl num-
ber, Ha—Rayleigh number, g, = 1/T, with T,—
representative temperature, I —temperature variation
scale, n; = &bi3 with &;;—Kronecker delta function,
R, = @mhﬁf = YRaPr 321 5 = G,/C,
(=1.4 for air). In general, the conductivity k and vis-
cosity p are functions of temperature T. In this paper
we assume they are of the Sutherland law forms for air
(see [1],[2])-

Note that since the dynamic pressure ps in the mo-
mentum equation is now not related to density varia-
tion, this model does not contain acoustic waves.

SOLUTION BY SEGREGATED TIME STEP-
PING

Let {T™, u", k", p%, p™, Z™,u"™, p}} be the known so-
lution values at the time level ™ = nAt, the segregated
time stepping scheme we propose for solving the nondi-
mensionalized models (1)-(5) proceeds as follows:

1) Solve for T™*! the heat equation
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by either fully implicit (backward Euler) scheme or
Crank-Nicolson scheme. u* here, may be taken as u™,
or the extrapolation: 2u™ — u™~! for Euler scheme or
(3u™ — u™"*)/2 for Crank-Nicolson scheme.

2) Calculate p™+! = p(T™*1) and k™! = k(T"H1).

3) Solve for p7t! the O.D.E. (5) by either fully implicit
(backward Euler) scheme or Crank-Nicolson scheme.
Let

V =meas(Q), F" = / Veu" dx,
Q

Tﬂ+1_Tn
P’"/np ==

T* here denotes T"*! for Euler scheme and (T"%' 4
T™)/2 for Crank-Nicolson scheme. u* is defined as
above.

Sc=7_1

+ (u e V)T"} dx

The fully implicit scheme is:
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The Crank-Nicolson scheme is:

n41

VpT —P?

At
4) Calculate p™t! = p(pit!, T,

F‘ n T *
* T(PT+]+T-’T) = 9

(®)
Zmtt =np"tt
5) Calcul n+l_1_ n+1 n ndd ntd

culate p""2 = Z(p +p"), Z"T3=Inp"T7 .

6) Solve for {u™*!,p*'} the following Navier-Stokes
equation with variable density and viscosity by operator
splitting method (see [4],[5],[6]):
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NUMERICAL RESULTS

Consider the natural convection of perfect gas in a
vertical slot of width L and height H with left and right
wall temperatures of T) and T, respectively, where
Th > Te. Let Ty = (Th + Te)/2, 6T = Th — Te, as-
pect ratio A = H/L, e = g—r— Due to the limitation
of space, we will only present results for four test cases.
In the following, we denote the solution obtained with
correction to p?'“ for mass conservation by A-sln, and
solution without correction by B-sln.

In cases 1 and 2, our results are compared with the
exact solution data (see [1]). In Tables 1 and 2 below,
the critical point x-coordinates X;, Xo, Xp, Xn on the

midsection y = A/2 of the slot are defined as follows:

Xi--- T =0
Xpin

Case 1. We consider a closed slot, i.e. with both
ends closed, and choose ¢ = 0.6, A = 10, Ra =
10%, Pr=0.71, T, = 300°K. Both A-sln. and B-sln.
are shown in Table 1 and Figures 1.1 and 1.2. A graded
mesh of 720 rectangular elements with 2305 nodes is
used for this problem. Without correction to p;“, the
resulted deviation from mass conservation is less than
0.8%. Table 1 and Figures 1.1 and 1.2 show that the
solution is not sensitive to this small deviation. The
difference between the two solutions is less than 0.8%.
Compared with the exact solution, both solutions are
quite accurate with errors less than 2%, which is smaller
than the difference of 3% between the exact solution
and the numerical Navier-Stokes solution reported by
Chenoweth & Paolucci (see [1]). This shows that our
algorithm, does not rely on the correction to p}"'l for
global mass conservation to maintain solution accuracy,
therefore it can be applied to more general cases where
such a correction is either impossible or unfeasible.

Xo - -+ velocity y-component u, = 0;

Uy = Uy, mazx Xn--- Uy = Uy,min-

Case 2. We consider an open slot, i.e. with both
ends open, and choose ¢ = 0.6, A = 10, Ra =
103, Pr =0.71, T. = 300°K. The results are shown
in Table 2 (denoted by V-sln.) and Figures 2.1 and 2.2.

Note that the profiles shown by Figures 1.1, 1.2, 2.1
and 2.2 are very close to those of exact solutions (see

(1]).

exact sln. | A-sln. B-sln. error in B
X 0.6360 0.6374 0.6374 0.2%
Xo 0.6360 0.6374 0.6374 0.2%
Xp 0.2900 0.2894 0.2894 0.2%
Xn 0.8730 0.8851 0.8851 1.4%
Uy maz 0.0992 | 0.0981 | 0.0974 1.8%
Uy, min -0.0938 | -0.0927 | -0.0920 1.9%
TABLE 1.
exact sln. V-sln. error in V-sln.
X 0.63600 0.63740 0.2%
Xo 0.63600 0.63740 0.2%
Xp 0.29000 0.28940 0.2%
Xa 0.87300 0.88510 1.4%
Uymaz | 0.09846 | 0.09845 0.01%
Uy, min -0.09615 | -0.09618 0.03%
TABLE 2.

Case 3. We consider a closed sqare (A = 1) with e =
0.6, Ra=10°% Pr=0.71, T, = 300°K, compare our
results with Chenoweth & Paolucci’s (see [2]). A graded
mesh of 576 rectangular elements with 1825 nodes used
for this problem. Figiures 3.1 and 3.2 show that our
results are very close to Chenoweth & Paolucci’s.

Case 4. Asin case 1, we consider a closed slot with
e=06, A=10, Pr=0.71, T, = 300°K but with
Ra = 10°. A graded mesh of 2160 rectangular elements
with 6709 nodes is used for this problem.

As shown in Figures 4.1 and 4.2, the A-sln. and B-sln.
are almost identical. In fact, without correction, the de-
viation from global mass balance is less than 0.35%, and
the difference between the two solutions is also less than
0.35%. This shows again that our algorithm does not
rely on the correction to pit! for global mass conserva-
tion to maintain solution accuracy.

Note that Figures 4.1 shows clearly a steady state
with only one primary vortex. However, Chenoweth
& Paolucci (see [2]) reported that the same problem
has a steady state with two vorteces, one centered at
y = 5.5 and another at y = 2.5. In the author’s opinion,
their finding may be a result of lacking gdod stability
behavior of their numerical scheme.
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Figure 1.1 Velocity profile along y = 5:
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Figure 1.2 Temperature profile along y = 5:
solid line - -+ A-sln., circules --. B-sln.
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Figure 2.1 Velocity profile along y = 5.
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Figure 2.2 Temperature profile along y = 5.

Figure 3.1(a) Velocity fields: our result
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Figure 3.1(b) Velocity fields: Chenoweth & Paolucci’s '

Figure 4.1 Stream lines:
left --- A-sln., right --- B-sln.

Figure 3.2(a) Isotherm fields: our result

Figure 3.2(b) Isotherm fields: Chenoweth &

! Figure 4.2 Isotherm fields:
Paolucci’s left - -- A-sln., right --- B-sln.



