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ABSTRACT

In the present paper a numerical solution for continuous
model describing the motion of liquids with large amounts
of suspended solids is presented. The mathematical for-
mulation is based on Bingham visco-plastic model. The
analisys has been carried out by direct simulation of 2-D
equations, by means of a finite difference method [9]. Nu-
merical results have been obtained for Bingham flow in a
driven cavity and for the interaction of a free surface water
wave with sandy bottom.

INTRODUCTION

The fluid mechanical theory of the dynamical interac-
tion of a collection of particles and the surrounding fluid
has been developed by several authors [4], by means of a
representation of the system as two interpenetrating and in-
teracting continua. The equations of continuity and motion
for the model stated in these terms are, as might be expected,
considerably more complicated with respect to the case of
a single fluid. In particular it is necessary to obtain con-
stitutive relations for the stress tensors of both phases, as
well as for the interaction force, and to solve the system of
equations (in 3-D, 8 scalar equations) with suitable initial
and boundary conditions.

In several practical applications the details of the flow
and the motion of particles are not required, whereas what
is desired to know is the collective particles motion; a single
fluid model, in which the cffects of the particulate phase
is accounted for in terms of an effective viscosity, can be
a rather effective tool. The mechanics of a collection of
particles interacting with the surrounding fluid can be there-
fore studied regarding the two phases as jointly forming a
single pseudo—continuum. The literature contains many dis-
cussions aboul this approach, the majority concerned with
the relation between the theology of suspensions and the
properties of the fluid and the particles; among these, one
could mention the classic paper by Einstein [1] concemning
the viscosity of dilute suspensions, and a more recent work
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due to Happel and Brenner [8], in which the results obtained
by Einstein are extended for higher concentrations.

In this paper the numerical solution of a mode] based on
such kind of approach is presented. In particular, a fluid
with rheological properties connected to density has been
considered: in the regions of dilute suspensions the fluid
is assumed lo be Newtonian, with viscosity telated to con-
centration [8], whereas, for very high amount of suspended
particles, the intergranular forces are represented by Bing-
ham model.

In the first numerical example the simulation of constant
density Bingham fluid in a driven cavity has been performed,
to verify the capability of the algorithm to deal with strong
viscosity variations flows; this test gives rather encourag-
ing results, in that the generation of regions of rigid motion
inside the fluid domain does not give rise to numerical in-
stabilities. Finally, in the second example the interaction of
gravity wave with bottom particles has been considered.

MATHEMATICAL FORMULATION

Fluid—particle interaction is studied by modeling the two—
phase flow by means of a pseudo—continuous medium; the
mathematical model can be outlined as follows:
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where u; = (u, ) is the fluid velocity, p is the density, p
is the pressure (including gravity potential), w; = (0, @) is
the settling velocity, « is the particle diffusivity and 7}, is
the extra—stress tensor.

The main feature of grains with respect to fluids is that
frictional shear stress can act even at rest (Coulomb law,
[6]); some mathematical aspects of continuum models for
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the motion of non—cohesive granular materials have been
outlined by Jackson [6]: the extra—stress tensor can be writ-
ten as:
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where ¢ is the angle of internal friction and + is the orienta-
tion of the principal stress axes. By this constitutive relation
the equations of motion can be obtained:
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These equations, together with [ 0.1] and the condition of
coaxiality:
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describe the motion of a non—cohesive granular material
(coarse sand, p ~ const.).

Numerical strategies to solve these equations, as far as the
author knows, are not so well established; therefore in the
present work the dynamical behavior of liquids with large
amount of suspended solids has been studied by means of
Bingham model [2], suitable to represent a large class of
fluids, for which some theoretical [3] as well as numerical
[5] work has been done. This model is characterized by
the presence of a yield stress, which can represent the typi-
cal mechanical properties of granular materials, as internal
friction and cohesion.

In the expression chosen for the extra—stress tensor T;;
viscosity variations with density are taken into account [8]
and, beyond a certain threshold of concentration, the vis-
coplastic behavior does appear. Namely, the incompress-
ible generalized Newtonian fluid constitutive equation is
assumed [7]:
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where the viscosity is a function of density and of the second
invariant 5;; = %S,‘; Siy:
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It could be noted thatin [ 0.9] ;2 is notdefined for S;; = 0
(rest or solid—body motion); therefore, such expression has
been suitably regularized:

1= nokp) + 27olp)(S17 + ) (0.10)

where 7 can be as small as one wishes.

NUMERICAL EXAMPLES

Primitive equations for the 2-D problem have been dis-
cretized on a staggered grid by a finite difference scheme,
following Rai and Moin [9].

The first numerical example concerns the case of Bing-
ham flow in a driven cavity (p = const.); the solution has
been computed in a cartesian uniform 40 x 40 grid. In
fig.1 the streamlines of the steady flow are depicted: the
well known flow features of the Re = 1. Newtonian case
(a) are compared with the viscoplastic case (b: Re = 1.,
0 = 7.5); the thick line is the boundary of solid-body mo-
tion regions. Similar results have been obtained in [5]. In
fig.2 the same comparison is pointed out for the horizontal
component of velocity in the vertical midsection, whereas
in fig. 3 the influence of the parameter 5 on velocity profile
is stressed. The behavior seems to be rather good, since the
solution converges rather rapidly (with respect to the param-
eter ) and it is not necessary to use very small values of
such parameter. In the present work an explicit algorithm
has been used, and of course the convergence of the solu-
tion to the steady state is rather slow, since small time steps
have to be used: numerical experiments suggest the use of
Al ~ 20986 - Ar2*21%% 03 for Re = 1. and 7o = 7.5.
In fig.4 the convergence of the solution is shown for various
values of the parameter .

Finally, the numerical algorithm have been implemented
to study the interaction between a gravity wave flow and a
sandy bottom, with generation of sand waves (fig.5).
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Fig.1 Steady flow streamlines in a driven cavity; (a): Newtonian fluid, Re = 1., (b): Bingham fluid, Re = 1., 7o = 7.5.
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Fig.2 Driven cavity steady flow: profiles in the vertical midsection of 5;; (Bingham) and horizontal velocity.
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Fig.3 Driven cavity steady flow:
horizontal velocity profiles for
Bingham flow, Re = 1., 1o =

1.5,
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Fig.5 Interaction between gravity wave and sandy boltom; Apo/po = .25, Apa/ya = 10, Re = 500, Sm = 10,

o= 10,np=10""



