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ABSTRACT

A streamline is defined as a line that is everywhere
tangential to the local fluid velocity. In two dimen-
sions, a streamline can be defined as an iso-line of
a scalar stream function, and in three dimensions, as
the intersection of the iso-surfaces of two stream func-
tions. This paper describes algorithms for computing
the stream functions from solenoidal vector field data
arranged on an arbitrary mesh.

INTRODUCTION

Streamlines

One of the most fundamental methods of visual-
ising CFD data is the construction of streamlines,
which are integral solutions to the equation:
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Usually the streamline is computed by numerical in-
tegration of the ordinary differential equation

= = u(2) ()

where u is the velocity at a position @. An analysis
of particle path integration algorithms can be found
in [Darmofal and Haimes, 1995]. It has been shown
[Mallinson, 1988], that, in order to construct accurate
and realistic streamlines, mass conservation should be
upheld:

V.pu = 0. (3)

Application of Gauss’ divergence theorem results in
the condition that the total flux through a cell is zero:

foun=o 2

We assume that this condition holds for all mass
conservation cells in the mesh, which may or may not
correspond to the computational cells, depending on

the discretisation. Typically, the computational mesh
consists of quadrilateral or triangular cells in two di-
mensions, or hexahedral or tetrahedral cells in three
dimensions. However, the algorithms presented in
this paper work for conservation cells which can be ar-
bitrarily shaped polygons or polyhedra, provided that
they are convex. The particular motivation for this
work comes from recent developments in unstructured
finite volume techniques which use the Voronoi dia-
gram as the conservation cells [Were and Mallinson,
1995]. In this case, values of mass-conservative flux
can be computed through the edges of the Voronoi
digram from the velocity and pressure held at the
nodes of the computational cells (tetrahedra). These
velocities are not mass-conservative.

If mass conservative flux is not available, and com-
puting the flux from nodal velocities does not provide
a solenoidal flux field, then it is assumed that the
velocities represent some underlying solenoidal (and
therefore physical) field and the field is smoothed un-
til it is solenoidal. However, most flow solution meth-
ods will produce solenocidal flux fields.

STREAM FUNCTIONS IN TWO DIMENSIONS

The Single Stream Function

If we take the two-dimensional form of the diver-
gence equation (3), it follows that pudy — pvéz is an
exact differential, equal to §1) for example. Then
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so that 1 is constant along the streamline. This is an
important result, as it means that streamlines can be
constructed by computing the iso-lines of the stream
function 1.

The stream function also relates to the mass flow
between two points in the flow field:

2
gz = ] (pu.n)dA (6)



400

as shown in Fig.1.
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Figure 1: THE DISCHARGE BETWEEN TWO
POINTS EXPRESSED AS A DIFFERENCE OF STREAM
FUNCTION

Computing the Stream Function
If the stream function is not available from the out-

put of the flow solution, it can be be calculated from
the values of flux across the edges of the conserva-
tion cells. This is done using a recursive algorithm
which starts by arbitrarily setting the stream func-
tion at one node to zero and traversing the edge lists.
Providing the field is solenoidal, the value of stream
function at a node is independent of the path I taken
to reach that node:

= u.dz — pv.d
‘ér _irp pv.dy (8)
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from the definition of the stream function [Woodgate,
1992].

The algorithm is highly efficient and accurate as
only one addition is performed for each edge tra-
versed. In order to compute streamlines, the value
of stream function is interpolated from the nodes us-
ing a multiquadric function defined by:

b)= > onfl@—=z)?+r2  (10)
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where the multiquadric constant, 7, is related to
the distance between data points [Carlson and Fo-
ley, 1991]. The streamline is computed by find-
ing the contour of the stream function. The coeffi-
cients «; are found from the interpolation conditions
¥(®;) = ;. Fig.2 shows contours of stream func-
tion in flow around a rotating cylinder. The stream
function is defined on the Voronoi diagram of the tri-
angular grid, which is used as the conservation mesh
[Were and Mallinson, 1995].

STREAM FUNCTIONS IN THREE DIMENSIONS

Figure 2: CONTOURS OF STREAM FUNCTION OF
FLOW AROUND A ROTATING CYLINDER AND AS-
SOCIATED STREAMLINES

Dual Stream Functions

The problem becomes considerably more complex
in three dimensions. If two independent siream sur-
faces can be computed, which are integral solutions to
(1), then their intersection will be a streamline. The
surfaces can be represented by functions f = f(x)
and g = g(x). For a steady, compressible flow,
the momentum is related to these functions by [Yih,
1957]:

pu=VfxVyg (11)

from which we can see that the divergence vanishes:

V(VfxVg) = Vg.(VxVS)
— Vi(VXVg) =0

The dual stream functions are also related to the mass
flux through an area:

= fpu.m (fo—)g2—g1)  (12)

which is equivalent to (6).

Solution Methods

Computing the dual stream functions has been
considered for hexahedral meshes [Kenwright and
Mallinson, 1992]. A different approach which re-
lies on the stream functions being orthogonal, ie
Vf.Vg =0, has also been considered [Beale, 1993].

For a general conservation cell, the values of both
stream functions at all of the nodes must be com-

puted. The easiest way of doing this is to construct
an fg diagram by plotting the values of the stream



functions against each other at the nodes of the cell.
An example fg diagram for a tetrahedral cell is shown
in Fig.3. Note that both stream functions along a
streamline are constant and streamlines are therefore
reduced to points on the fg diagram.

There are two approaches to computing the stream
functions: a global method and a local method. Both
algorithms for computing stream functions on tetra-
hedral meshes are outlined below; the hexahedral case
can be found in [Kenwright, 1992].
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Figure 3: THE TRANSLATION FROM CARTESIAN
TO fg SPACE FOR A GENERAL TETRAHEDRON,

Whole Field Solution Method Given the values of
the dual stream functions at three nodes of a tetrahe-
dron, the values at the fourth can be computed easily
from the mass flux data. This is because the fourth
node can be seen as a barycentric combination of the
other nodes; the barycentric coordinates being com-

puted from the relative fluxes through the faces of the
tetrahedron:
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g4 = ——g1——g2——g3 (14)
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provided 14 # 0. If the flux through the face cor-
responding to the unknown node is zero, a solution
for both stream functions cannot be found, and the
tetrahedron is skipped. It is usually possible to find
the unknown stream functions from the fg diagrams of
neighbouring tetrahedra. We can then travel through
the mesh in a recursive fashion, computing the dual
stream functions as we go.

This approach fails should either of the stream
functions become multi-valued, as in areas of recircu-
lating or spiralling flow. The stream surfaces can be
visnalised by constructing iso-surfaces, and stream-
lines obtained by calculating the intersection of iso-
surfaces of both stream functions, as seen in Fig.4.

Local Solution Method If a whole field solution can-
not be found, then a streamline can be computed
by tracking through the mesh, computing the dual
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Figure 4: A FAMILY OF DUAL STREAM FUNCTION
SURFACES. THE INTERSECTION OF THE STREAM
SURFACES HERE FORM STREAMLINES.

stream functions for cells as and when they are
needed. The algorithm proceeds as follows:

1. For a given start point, find the cell that contains
that point.

2. Construct the fg diagram for that cell.

3. From the fg diagram, find the entry and exit
faces for the streamlines.

4. Go the the neighbouring cell and repeat.

The fg diagrams can be constructed using one of the
four normalised fg diagrams shown in Fig.5, depend-
ing on the number of inflow, outflow, and no-flow
faces in the tetrahedron. Case (a) is used when there
are two inflow and two outflow faces; case (b) when
there are three inflow and one outflow faces (or vice
versa); case (c) when there is one no-flow face, and
case (d) when there are two no-flow faces. Finding
the inlet and exit faces can be done by computing the
barycentric coordinates of the streamline with respect
to the nodes of each face, which involves inverting a
three by three matrix for each face tested. Only faces
known to be outflow faces need be tested. This com-
pares favourably with a numerical integration scheme
which requires the inversion of a four by four ma-
trix for each cell the streamline visits. The algorithm
terminates when the streamline reaches a boundary
or reaches a face already visited. This prevents the
streamline circulating forever in a re-circulation zone.

The streamlines are rendered by connecting the
inlet and outlet points of each tetrahedron with a
straight line. A smoother streamline can be cre-
ated by then passing an interpolating spline through
the points of the streamline. Streamlines computed
using this technique can be seen in Fig.6. The
flow is through a ventricular assist device [Were and
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Figure 5: NORMALISED FG DIAGRAMS,

Mallinson, 1995]. In this case the complex and vorti-
cal nature of the flow prevents a whole field solution
being obtained. If a numerical integration scheme is
used, however, not all streamlines from the starting
point reach the outlet, due to discrepancies in mass
conservation.

Figure 6: STREAMLINES IN FLOW THROUGH A RO-
TATING PIPE.

General Cells The corresponding algorithms for hex-
ahedral meshes are more complicated as there are
more unknowns, and extra equations involving mass
flow gradients must be used. Another drawback in
the hexahedral case is the possibility of concave and
non-simple (self-intersecting) areas on the fg diagram.
Extending the method to general polyhedra (such as
Voronoi cells) is theoretically possible but would be
very complicated in practice, as many more equations
would have to be found. The best approach is then
to decompose the conservation polyhedra into tetra-
hedra. This can be done using a Delauney algorithm,
taking care to match faces on adjacent cells. The
mass flux through internal faces can be calculated
from mass conservation.

CONCLUSION

This paper demonstrates how stream functions
can be computed from two and three dimensional
solenoidal vector field data. The global solution algo-
rithm provides a means of visualising the whole vector
field, and constructing stream surfaces and stream-
lines provided a solution can be found. However,
currently solutions can only be obtained for simple
irrotational flows. Work is in progress in extending
the global stream function algorithm to more complex
flows.

The local method allows the construction of
streamlines in almost all flow problems, and is
faster than standard numerical integration tech-
niques. Both methods have the advantage of being
inherently mass conservative.
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