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ABSTRACT
Conditional methods are utilized for derivation

of the Markov-type model for Lagrangian
single-particle statistics of turbulent diffusion.
This method gives theoretical prediction for the
constant Cy (the basic constant determining

diffusion  coefficient in velocity phase space). In
traditional methods this constant is considered as
an empirical constant.

INTRODUCTION

The main requirement for any model claiming to
describe  turbulent  diffusion of the  Lagrangian
particles is  consistency  with  Richardson’s  (1926)

law and Kolmogorov (1941) theory of turbulence.
Obukhov (1959) noted that the concept of a Markov
process applied to diffusion in the velocity phase
space is  consistent  with these restrictions and
suggested describing the diffusion in the velocity
phase  space by the correspondent  Fokker-Plank
equation.  Since  that time this  approach  was
discussed in many publications (Monin and Yaglom,
1975). Thomson (1987) and Pope (1987) investigated
basic  consistency  principles related to  Markov
assumptions. A  set of corrections to  Markov
assumptions is related to up-todate knowledge on
small-scale turbulence [large but finite Re number
(Sawford, 1991); intermittent nature of turbulence
(Pope and Chen, 1990; Borgas and Sawford, 1994)].
Double-particle models were considered by Durbin
(1980), Novikov (1989) and  Thomson (1990).
Lagrangian particles diffusion in near-wall
turbulence is considered by Dreeben and Pope (1993).
But all of these approaches follow similar scheme:
I)the  Markov-process  assumption  (sometimes  with
certain  corrections to this concept) for diffusion

in the wvelocity phase space; 2)the Fokker-Plank
equation with unknown coefficients is then
postulated;  3)the  coefficients are  determined by
theoretical ~ consistency  conditions  (when  this s

possible), by  agreement of the solutions and

experimental data or specified in a way avoiding
complications.

Our purpose here is to develop an alternative
approach  for  single-particle  characteristics  based
on utilization of the conditional expectations. This
has  some  similarities with  Conditional Moment
Closure (CMC) suggested by Klimenko (1990, 1993,
1995) and Bilger (1991, 1993) (see also Li and
Bilger, 1993; Klimenko, Bilger and Roomina, 1995).
The  basic  difference  between  traditional and
conditional ~approaches is that the main equation is
not postulated but derived on the basis of transport
(Navier-Stokes and scalar transport) equations. Then
the equation obtained is closed using Markov-type
assumptions identical to assumptions of the
traditional ~methods. The conditional equation being
a consequence of the t(ransport equations contains
additional information about the coefficients of the
model.

The relation of the Lagrangian pdf P, and
conditional characteristics is given by the equation

P = L0, (M

where  n,=<n> is the average total number of
particles (which is assumed to be extremely large);
¢ is their instantaneous concentration measured in
particles per volume; density is assumed to be the
constant  p=const; Q=0,(uxt)=<c|u> is expectation
conditioned on a fixed value of velocity and P, is
the  Eulerian  velocity —pdf. The Lagrangian pdf
Pi=Pi(ux) is introduced as the probability for
one of the particles (any particle chosen with equal
probability) having a certain velocity at a given
physical location and time. Equation (1) reflects
that the probability of obeying certain conditions
for particle trajectory  xy1), uft) of a particle
(namely  x-Ax<(xp)i<x+Ax; and - Au<(uy )i <up+Au
at moment () is proportional to the average number
of  particles obeying those  conditions.  Particle
sampling includes two stages: 1)choice of one of
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the particles and 2)choice of realization of the
turbulent field. If P_ is transitional pdf, all of
the particles positions must satisfy certain  initial
conditions.

Concentration ¢ can be also treated as a
continnous  scalar  obeying  the  scalar  transport
equation (again: provided the number of particles is
large). The  particles we  consider are  not
necessarily fluid particles and can be involved in
Brownian-type  motion  which is  responsible  for
molecular diffusion (Dreeben and Pope, 1995).

EQUATION FOR CONDITIONAL MEAN

The unclosed equation for the conditional mean
O, can be obtained using the joint velocity -
concentration pdf P.(u,c;x,t)=P.(f:x.1) which is
governed by the equation (see Pope, 1985)

2 o
S—Pt + div[<u|f>P+] + ONGP, _ I<SiESP, (g
t

df i df ; of;
where  f=uw, S= - L 92 for =123
p axi

and fy=c, Si=W
N=<D(Vf-Vf)|t>

Equation (2) is a direct consequence of the
Navier-Stokes and scalar transport equations

g_‘:L + div [uui] ] div[DVu;] = % —gfc— 3)
g_f + div[uc] . div[DVc] =W )

The Re number is assumed to be high in Eq.2) so
molecular transport can be neglected (Kuznetsov and
Sabelnikov, 1989). Another restriction: the
diffusion coefficient D is taken to be equal to the
viscosity  coefficient v so any effects related to
Sc#! are not considered here. The joint pdf equation
is multiplied by ¢ and integrated over all possible
concentrations ¢

0Py, WOP Dy - BGOP , wp, (5)
dt dx; du; du

where i=1,2,3; G= - <dplox;|u>/p; S=-(dpldx)/p

and Hi = a<D(VM5'VRiJC|U>Pu . 2<D(VM','VC)I|.I>Pu +
Hj
+ <c"§”|u>P, (6)

is a flux of scalar ¢ in velocity phase space;
Eulerian velocity pdf P, is governed by the equation

AP, . Py o e Py _ 9GP, 7
ot ox duidu | du;

gj = <D(Vu;Vuy)|u> is dissipation tensor;
(-)"=()-<(-)|u> denotes fluctuations with
respect to conditional mean.

Eq.(5) can be written as the equation for
Lagrangian pdf P_

9Py, dwPy 9GP, d H; _ (8)
dt dx, du, du; "m

In order to avoid complications we assume in Eq.(8)
that W=0 and the average total number of nparticles
n, is a constant (particles do not appear or

disappear).  The  instantaneous  total  number  of
particles n. can  be, however, different for
different realizations (depending on initial
conditions), but  nm=const for each of the
realizations.

ANALOGY WITH MARKOV PROCESS

We consider a random process wuy(r) where u, is
one of the components of particle velocity.
According to Kolmogorov (1941) theory the increment
of wu, is estimated as <(Aup)2>=(}(,emm where C, is a
constant, €, is the mean dissipation of energy and
Ar is time interval of the inertial interval of
turbulence f«Ar«s. Here ¢, is the Kolmogorov time
scale and ¢ is the time macroscale (Lagrangian).

The correlation R of the particle accelerations
u=duy/dt is given by
R(AI) = <.L.lp(fu+Af) I:JP(I(])> =
14 2 1 d
=—=_ <(Au)> = - Ce At =0 9
2 ap <A 24 " )

That is Lagrangian accelerations are not correlated
for Amt, and 4, is an  estimation of the
characteristic correlation time for accelerations.
Obukhov  (1959) assumed that this indicates an
analogy of particle motions in the velocity phase
space and Brownian motion (Markov process). The
Markov assumption is not absolute: accelerations can
be uncorrelated but, in strict mathematical sense,
statistically ~dependent (this can be related to the
internal  intermittency phenomenon). We must also
note that Eq.(9) is only the main order equation and
correlation R may include weak but long-time
correlations (Monin and Yaglom, 1975). In this paper
we follow Obukhov’s hypothesis and do not consider
these corrections.

If  W=0, particles appear (for W>0) and
disappear (for W<0). We can still consider such
particles as  Brownian  provided the characteristic
"life time" 1, of the majority of the particles is
much  greater than the  characteristic  correlation
time: Tyl

MARKOV-TYPE _APPROXIMATION
Following  Obukhov’s  (1959)  hypothesis  we
approximate flux H; by the diffusion approximation

B =0, - Byl (10)
m du

i
and  diffusion B
rewritten  in

with unknown drift A?
coefficients.  Equation (10) can  be

terms of conditional means

H= AQ, - B; 9% (1)
E)uj
where A=A°P, - B?j%u and  B=BP,
uj

Coefficients A and B?J- can be determined because



they are restricted by some
system (3)-(4).

DIf scalar ¢ is passive, Eq.(4) is linear with
respect to c¢. So that c=ac,+bey, W=aW +bW, is
solution of Eq.(4) with arbitrary constants a and b,
provided ¢,W, and c¢,W, are also solutions of
Eq.(4). This property can be formulated in terms of
conditional means: Q,=aQ,.+bQuw, W=aW, +bW,, is a
solution of Eq.(5) provided both Qu,W, and QW
obey Eq.(5). The consequence is quite evident: if
the diffusion approximation of H; is correct (and we
assume in this paper that it is correct) then
coefficients A; and B; must not depend on @, It is
possible now to determine A; and Bj for one
particular O, and the coefficients must be the same
for any other Q,.

2)Since  W=0, c=cj=const is a solution of Eq.(4)
then W,=0, (Q,=c, must make an identity of Eq.(5).
This (in combination with Egs. (5), (7), (I1) gives
A=d(e;P,)0us+y;, where ; is an arbitrary vector
chosen so that dyy/du=0. Equation (6) vyields =0
for c=cy.

3)Another property of the (ransport equations
(3)-4) is that if Wp=-adp/dx; (where a=const)
then c=aju+cy, is the solution of the equation (4).
If we wish to avoid negative concentrations ¢, we
choose value of the constant ¢, which is large
enough (otherwise we put ¢4=0). The conditional
means are given by Q,=au+cy and W,=aG; and these
relations must be a solution of Eq.(5). Substituting
O=au+c, and W,=gG; into Egs. (5), (7), (11) we
obtain  By=g;P,+y; where oy/ou=0. Equation (6)
requires that y5=0 for c=au;+cy.

In order to ensure that the diffusion
approximation (11) is applicable for this solution
we should also determine if Tpn. If W<O in a
microvolume (which smaller than Kolmogorov length
scale x, but still containing a large number of
particles), particles disappear from this
microvolume. Within the time interval Ar«r, the
value of W=qG; is not changed significantly. The
number  of  particles that have disappeared s
estimated as Ac ~ e Aty ~ cugAtl(uty) where
subscript  "k" is for the correspondent Kolmogorov
scales and Vp~pu/t,. The probability P, of any of
the particles to disappear within the Ar interval is
given by P‘3 ~ Ace ~ wAt(un) -~ ReAm,
(particles  which  disappear are chosen with equal
probability and independently for each Af). So we
must  wait a longer time T~AUP, lo have a
significant chance of disappearance of a chosen
particle. The particle "life time" 1, is estimated
as T,~4Re vty

The equation for flux H; takes the form

properties of the

p

H—»EP—Q-“—+a—“—”-E 0, (12)
du; du

CONSISTENCY WITH KOLMOGOROV THEORY
By substituting closure (12) into equations (5)
and (8) we obtain

9Q,P, + dui QP | &Py _Q_u_+ dg; P, 0y =
dt dx; du;du;  dudu;
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__aLQu_u W,P, (13)
u

This  equation  contains  inverse  parabolic  terms
related to the Eulerian pdf equation (7) and direct
parabolic ~ terms  related to the equation for
the conditional mean Q,

_QLM_Q“G_QLL-E_QL W, (14)
ox; du;, auauJ

Equation (14) is obtained from Eq.(13) and Eq.(7).
Equation (13) can be also written as the equation
for the Lagrangian pdf (assuming that W=0)

oPy | duiPy . OGiP) . 9% P
ik F I T P il = 15
ot 8xi au-, auia!:ti o
where
° 2 deiP
Gi=Gi+———|-|—u-'. GiE-——E 16
Py u; < jw> (16)

Equation (15) can be treated as a Fokker-Plank
equation describing the correspondent Markov process.

Obukhov’s original model implies that diffusion
in velocity phase space is isotropic and that
conventional  (but not conditional)  dissipation of
energy is a determining parameter of this process.
Equation (16) is consistent with the original model
provided we apply those assumptions:

1)g;; does not depend on u; that is g=<D(VuyViy)>;
2)local isotropy: Ej=Em0;/3 where €m is
conventional average dissipation of energy

Em=<z [%4 34]>“ [%%?'3%%

Hence Eq.(15) takes the form

.QEL.‘.BM'PI + aGDP B aP; _,0 (!7)
dt axi aH'I au au,

where the diffusion coefficient in  velocity phase
space is given by

2By = Cim: Cy=2/3 (18)

and

G’? = - ._‘I.<Qp_lu> + Z_Bu a_Pu. (19)
p aXi : u aL‘!i

The derived form of the drift coefficient G
provides consistency of Lagrangian and  Eulerian
pdfs. We note that Q,=cy=const, W=0 is a solution of
Eq.(14). If @Q=cy (and if V,, the total volume of
the flow, is finite), the Lagrangian pdf is given by
P=P/V, (note np=c,Vy, and Eq.1)). Substitution of
P =PV, into Eq.17) yields equation which is
consistent with the Eulerian pdf equation (7).

Let us consider an energy balance for Eq.(17)
in the case of homogeneous turbulence. Multiplying
Eq.(17) by k=u*/2 and integrating we obtain

j’: + <Gjupy = 3B, = &, (20)
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Here <>_ denotes averaging using the Lagrangian pdf
P.. If PP, (this corresponds to the Lagrangian -
Eulerian  comsistency  principle)  then  <Giu> -
<Giu> = 2¢, and Eq(20) takes the form dk/di=-,
which  specifies the Eulerian energy balance in
homogeneous turbulence. We substitute P, for P_ in
Eq.(20) and note that pressure-velocity correlations
do not affect k&  Krasnoff and Peskin (1971)
considered the Langevin  model and  arbitrarily
assumed that if Py =P, then <G?ui>|_ represents  the
dissipation  rate  g,=<Giu>.  (we express  those
assumptions in  terms of the equations obtained
here). Their next assumption is that dk/dr=0. It can
be seen from [Eq.(20) that the combination of
<Glupse, and  dk/dr=0 gives a similar value of
By=e,/3. Bach of those estimations is different from
that derived here but the errors compensate each
other.

CONCLUSIONS

The conditional technique developed in  this
paper gives theoretical prediction for the constant
Cy  determining  diffusion  coefficient in  velocity
phase space (this conditional method has some
similarities with Conditional Moment Closure). The
only assumptions we use are the assumptions of
Obukhov’s (1959) original model. The prediction of
the  constant is  possible  since the  suggested
derivation of the model utilizes the Navier-Stokes
and  scalar  transport equations  while traditional
methods simply postulate a Fokker-Plank equation. We
should note that recent Direct Numerical Simulation
(DNS) results give larger values of C, = 2+4 (Pope,
1987). The earlier measurements of the constants
related to C; for atmospheric and ocean flows with
large Re number have large scattering and some of
them give estimations for C, smaller than that
obtained here (Monin and Yaglom, 1975, p.567).

The value of G is not determined by a closed
formula as G is not determined in conventional
models. So different consistency requirements
(Thompson, 1987; Pope, 1987; Sawford, 1993) must be
implemented in order to specify G;. The conditional
method yields, however, unclosed equation (19) for
G: and cocfficient G; can be measured in experiments
or determined from DNS data.
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