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ABSTRACT

The melting or dissolving that occurs when a bi-
nary melt is placed above a solid of a different com-
position is examined both theoretically and experi-
mentally. In the case considered, the melting or dis-
solving is driven by vigorous compositional convec-
tion that results from a convective instability of the
compositional boundary layer in the vicinity of the
solid. Scaling analyses are presented that yield theo-
retical expressions for the interfacial velocities in four
distinct physical regimes. These expressions are then
confirmed using laboratory experiments in which ice
and wax are overlain by hot aqueous solutions. The
experiments also demonstrate that, for vigorous con-
vection to occur, the unstable compositional buoy-
ancy needs to be at least twice the stabilizing thermal
buoyancy.

INTRODUCTION

Both the melting and the dissolving of solids in flu-
ids are fundamental physical phenomena which are
encountered daily. Melting occurs when the tem-
perature of the fluid is significantly greater than the
melting temperature of the solid, and is controlled
by thermal diffusion. In contrast, dissolving occurs
at relatively lower fluid temperatures, and is due to
chemical disequilibrium between the solid and fluid.
It is controlled by compositional diffusion and will
continue for as long as the fluid remains above its
freczing temperature.

In the special case where both the thermal and
compositional fields in the fluid are gravitationally
stable, fluid mechanics does not play a role, and the
rate at which either melting or dissolving occurs can
be determined analytically. Often however, either or
both of the thermal and compositional fields will be

unstable and convection will result. Convection in-
variably enhances the rate of melting or dissolving by
assisting the transfer of heat and composition to the
solid. In this paper, I summarize some scaling theo-
ries and experiments (Kerr 1994a,b) that have quanti-
fied this rate in the one-dimensional cases of melting
or dissolving driven by vigorous compositional con-
vection.

DISSOLVING

Consider the dissolving of a solid of composition
C;, melting temperature 7,, and far-field tempera-
ture T}, overlain by a fluid with a composition Cf
and temperature 7. If the volume of fluid is large,
the far-field conditions will not change, and it is ex-
pected that the solid dissolves at a constant velocity
V. The resulting thermal and compositional profiles
are shown in figure 1 and illustrated on a typical phase
diagram in figure 2. At the interface between the solid
and the fluid, the temperature 7; and composition C;
are constrained thermodynamically to lie on the lig-
uidus curve

Ti:TL(Ci)s (l)

which gives the freezing temperature of the fluid as
a function of concentration. Within the solid, the
temperature is given by

T(z)=To + (T = T)e V25 (2)

where k; is the thermal diffusivity of the solid.
There are compositional and thermal boundary

layers immediately adjacent to the interface. If the

respective fluxes to the interface through these layers

are Fo and Fp, the effective layer thicknesses can be
defined by

—D(Cz_c") and Py = __kf(Ti —T)
C T
(3a,b)

Fe =
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where D) and kj; are the compositional diffusivity
and thermal conductivity of the fluid. If the volume
change associated with the phase change is neglected
(c.f. Woods 1992), the boundary layer fluxes are also
linked to the dissolving rate-V by the interfacial con-
ditions

Fe = V(Ci—C;)and Fr = V(PsLs+Pscs(T;"_‘Ts))n

(4a,b)
where py, L, and ¢, are the density, latent heat and
specific heat of the solid.

The aim is to use scaling theory to determine V in
the case where dissolving of the solid leads to vigor-
ous compositional convection, a situation which will
occur if the density p; of the fluid at the interface
is sufficiently less than the density p; of the far-field
fluid. T assume that the interface between the solid
and the fluid is flat, and that the unstable composi-
tional buoyancy released at the interface dominates
the stabilizing thermal buoyancy; i.e. that the ratio
TR of these buoyancies satisfies the condition:

= B(Cy — Cs)
alpsLs + pses(Ti — Ts)] /pres
where « is the coefficient of thermal expansion and

is the equivalent coefficient for the variation of density
with composition.

>1, (5)

Accordingly, it is envisaged both the compositional
and thermal boundary layers growing diffusively with
time :

he ~~vDt, hp~ \/kst,

where ¢y and Ky = ky/pycy are the specific heat

(6a,b)

and thermal diffusivity of the fluid, until a time 7
when the buoyant compositional boundary layer un-
dergoes a Rayleigh-Bénard type of instability that
drives vigorous compositional convection. Instabil-
ity can be expected when the Rayleigh number Ra of
this boundary layer reaches a critical value Ra,:

— o)Al
B, = Q(PID’;‘;:) C: (7)

where ¢ is the acceleration due to gravity and puj is
the fluid viscosity. I therefore obtain the estimates:

Ra.D 1/3 1/2
he = (—————ac o ) y hr =hc(ﬂ) ;
9(ps — pi) D
Ra?u? 1/3
TR (2;’*2) (8a,b,c)
Dg?(ps — pi)

Substitution of (8a) and (3a) into (4a) then yields the

prediction that the dissolving velocity

0 (M)”g (Cf‘c"), 9)

Racyf Ci = Cs

while combining (9), (8b), (3b), (4b) and (1) shows
that
Ty —To(Cy) =

psLs + pscs(TL(Ci) — Ts) (2)1/2 (Cf = Ci)
pPfcf Ky C;' = Cs ’
(10)
From the above analysis, it is concluded that the dis-
solving rate is given by (9), once C; is evaluated
from (10). I also note that Ra;'® is equivalent
to the constant % in the semi-empirical expression
Nu = yRa'/? that relates the Nusselt number to
the Rayleigh number.

In the above analysis, it has been implicitly as-
sumed that the distance \/E over which composi-
tional diffusion occurs is large in comparison with the
distance V7 that the solid has dissolved in the time
T for instability. From (8a), (8¢c) and (9), it is found
that

he
N — 11
Vir C (11)
where o
_ i — Ls
C=5—g (12)

Equations (9) and (10) are therefore asymptotically
correct when C >» 1. If C is smaller however (i.e.
C 2 1), then (11) suggests that h¢ is more accurately
estimated by

Ra.Dpjy \1/3 1
he = | ———= 1+ =), 13
© (Q(Pf_ﬂi)) tgh U9
which results in V' and T} — T} being given by:
Ve (Q(Pf—ﬂi)D2)1/3 (Cf_ci) __V
Rac.uf Cf =% Ra, 1(/;;)

and

Ty — Ty(Cy) =

psLs+ p,c,(TL(Cg) — T,) (2) 1/2 (Cf - C; )
prey Ky Cr =G,/
(15)
However, when C < 1, the compositional profile be-
comes very nonlinear, equation (3a) is no longer ac-
curate, and a new scaling analysis is required.

MELTING

During the melting of a solid (figure 3), compo-
sitional diffusion can be neglected in comparison to
thermal diffusion, so that there is a sharp step in the
compositional profile (figure 4). In the case where
melting of the solid leads to vigorous compositional
convection, a thin boundary layer of buoyant melt is
envisaged that continually grows and periodically de-
taches to drive this convection. The timescale T and
wavelength A for exponential growth of the fastest
growing linear Rayleigh-Taylor instabilities to this
buoyant layer are given by

Biy  Em

= P(#m)ghm(!’f — Pm)

and A = Q(;‘—f)nhm,
")



where h,, is the thickness of this layer, pt, and p,,
are the viscosity and density of the melt, and P and
@ are known functions of ﬁ (Kerr 1994a).

The typical thickness of the melt layer can be
predicted from the argument that the time to grow
the melt layer, hp,/V, must be comparable to the
timescale, T, of the gravitational instabilities that
drain the layer and drive the overlying compositional
convection. This argument leads to the estimates

Ppm 1/3
o (B 17
’ (QV(PI_Pm)) (17)
d
an . ( PV pim )1/2 (18)
™ Nglpy —pm)/

In the typical time given by (17), heat is conducted
to the interface from a fluid layer of thickness

hp ~ \JEfT ~

Ppmk? 1/4
! )) . (19)

(gv(Pf — Pm
For the moment I shall assume that
k
hr > hp =L, (20)
km

where k,,, is the thermal conductivity of the melt, so
that an accurate estimate of the heat flux from the
fluid to the interface is

k(T —Tn)
~ hT .

The heat flux F' is linked to the melting rate V by
the interfacial condition

F = V(p,Ls + pscs(Tm — 13))- (22)

Substitution of (19) and (21) into (22) yields the pre-
diction that the melting velocity

F (21)

Vo~ (M)”S, (23)

Py, 8%
where the Stefan number S is defined by

sLs sts T =T
s=pletpeln=T) (24)
pres(Ty — Tm)
Using (23), 7 and h,;, can be estimated from (17)
and (18) as

P2 i/
TN( 5o ) (25)
9%(ps — pm)?Ks
and p /3
HEmkf
hp ~ | —m—mm————— . 26
(Q(Pf_Pm)Sz) o

It can then be shown that our assumption that com-
positional diffusion can be neglected in the compo-
sitional boundary layer, which requires that 7 <
fler/D, is satisfied if

s< ()" (21)
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In dimensional terms, (27) is equivalent to

s Tini—= TLY I 3]2
Ps +Psca( m )(_) ’ (28)

T =Tm >
Piret wr

a quantitative result that shows that a sufficiently
large superheat is required for melting to occur rather
than dissolving.

Using (26), it can also be shown that the assump-
tion expressed by (20) is equivalent to § > Fk,{?’
which is not surprising since the latent heat to form a
melt layer of thickness hy, is derived from the overly-
ing fluid layer of thickness hy. For somewhat smaller
S (ZFL), h,, cannot be neglected in comparison
with h7 in estimating F', and F' and V are more
accurately given by:

(Ty —Tw) _ ks (Ty —Tm) kp \-1
F = — (I + )
Bk h o Ths
(29)
and
_ (9lps = Pm)’“? 1ja ki -1

(30)
Finally, if § < ?kir, then the temperature profile is
very nonlinear, equation (29) is no longer accurate,
and a new scaling analysis is required.

EXPERIMENTS

In order to test the above scaling analyses, several
series of laboratory experiments were performed in
which either ice or a water-soluble polyethylene gly-
col wax (PEG 600) was melted or dissolved by over-
lying dense aqueous solutions. Figure 3 shows a pho-
tograph of one of the melting experiments, in which
plumes of buoyant melted wax stream away from a
flat interface and drive vigorous compositional con-
vection in the overlying hot fluid. Observations taken
from videos confirmed that vigorous convection re-
sulted in an interfacial velocity that was constant for
both melting and dissolving. Using experiments in
which ice was melted, the critical value of the buoy-
ancy ratio R required for vigorous compositional con-
vection was found to be about 2.0.

In figures 5 and 6, the measured interfacial veloc-
ities for melting and dissolving an ice floor are com-
pared with the respective theoretical expressions (30)
and (14). In both figures, the collapse of the data
onto a straight line provides strong support for the
scaling laws.
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Figure 1: The thermal and compositional profiles when
a solid dissolves into a fluid at velocity V.
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Figure 2: The path on a simple phase diagram of the
thermal and compositional profiles shown in figure 1. The
dotted portion of the path represents the jump in compo-
sition at the dissolving interface.

Figure 3: Photograph of a wax floor that is melting
underneath a hot, dense agueous solution of NaNQO3.
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Figure 4: Schematic diagram of the envisaged interme-
diate. layers of melted solid and cooled fluid during the
melting at velocity V', driven by vigorous compositional
convection, of a solid that is in contact with a hot fluid.
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Figure 5: The melting velocities Viype (in pm S_l) in
comparison with the velocity scale V) defined in (30).
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Figure 6: The dissolving velocities Veyp (in pm )
in comparison with the velocity scale V' defined in (14).



