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ABSTRACT

Results from experiments on pulsating turbulent pipe
flow are compared with computational simulations made
using the low-Reynolds number k-¢ turbulence models of
Launder and Sharma, Lam and Bremhorst and Shih and
Hsu. The LS and LB simulations generally predict the
correct response of the mean flow and the turbulence. The
SH simulations were less successful in reproducing
observed behaviour, particularly in the case of turbulent
shear stress.

1. INTRODUCTION

In this paper, we report direct comparisons between
some experiments on pulsating turbulent pipe flow and
computational simulations made using three low-Reynolds
number k-8 turbulence models. Over the years, the
development of such models has received intensive study
and a variety of formulations have been proposed. They
have mainly been validated by comparison with
experiments for a few widely-studied steady flow
situations. Recently, the present authors have reporied
direct comparisons between their experiments on transient
turbulent pipe flow with imposed excursions of flow rate
of ramp-type (Jackson and He 1993) and simulations using
a variety of turbulence models (Jackson and He 1995). In
particular, the performance of the models was critically
evaluated in terms of their ability to capture certain
important features of ramp-type transient flow involving
delays in the response of turbulence as well as in terms of
general agreement with data. The present authors have
subsequently undertaken experiments on pulsating
turbulent pipe flow (Jackson and He 1994). These have
yielded new and useful results which provide further scope
for evaluating turbulence models. Careful planning of the
experiments led to a more comprehensive coverage of
experimental conditions being made than hitherto.

2. EXPERIMENTAL DETAILS

The experiments were carried out with fully developed
flow of water using a long pipe of internal diameter 50.4
mm. A very repeatable sinusoidal variation of flow rate
with time about a steady mean level was achieved using
a computer-conirolled, pneumatically-actuated valve. A
counter/timer module used in conjunction with a turbine

flowmeter enabled measurements of instantaneous flow
rate to be made with high accuracy. A two-component
laser Doppler anemometer system enabled simultaneous
measurements of the axial and radial components of the
instantaneous velocity field to be made. The strategy of
data reduction used was basically one of ensemble
averaging the results of numerous successive experiments
in which the same variation of flow rate was imposed with
great repeatability. In the majority of the experiments, the
Reynolds number based on the mean values of the flow
rate was 7000 and the amplitude (peak to mean) was 20%.
The time period of pulsation was systematically varied
from 2 to 20 seconds to cover a range of non-dimensional
time period T(=2/3 UT/R) from 0.47 to 4.7. The
parameter Ty is the ratio of the time period of the imposed
flow pulsation to the time scale for the propagation of
turbulence radially from the near wall region of the flow
to the centre. Turbulence can be thought of as starting to
freeze in the core region when the parameter T, is less
than unity. Experiments with higher values of mean
Reynolds number (10500 and 14000) or higher values of
peak to mean flow rate (47%) were also conducted.

3. THE TURBULENCE MODELS AND NUMERICAL
METHOD

Three representative low-Reynolds number k-&
turbulence models were chosen for examination in the
present study. These include the pioneering model of this
kind due to Launder and Sharma (1974) and the variant
proposed later by Lam and Bremhorst (1981). The third
model examined is a recent one due to Shih and Hsu
(1991), which has been developed using DNS data.

The equations for the transport of k and € can be written
in a general form as:
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The model constants and damping functions are given in
Tables 1 to 4 along with other details.

The computer code used was specifically developed in
the course of the present study for modelling transient
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Table 1. Model Constants

Model ” e, C, | 2 | o, | o. l Table 2. Damping Functions
LS |[009 [ 1.44 | 1.92 | 1.0 | 1.3 Midel fu £
LB || 0.09 | 144 | 192 | 1.0 | 13 Ls s e e
SH 0.09 1.5 2.0 1.3 1.3 [ [P
(1+Re /507
‘ Table 3. Extra Terms LB -~ 1-exp(-Re?)
Model D E [1-exp(-0.0165Re )| 1 +'-E'¢;—
LS 2 72
2v(dyk foy)? 2w (PURy Y SH 1-exp(-a,Re -0 Re o e ) Ret Jg
LB 0 0 s 1—0.22exp(-_3_5_) -
SH || cexp(-Re?) 2w (3*UJdy *) a,=5¢-3, a,=Te-5, a,=8e-T
Note: [1=0 in all the models except that in SH Note: f=f;=1 in all the models except f1=1+(().05;’t.'“)3 in LB
=l d ,0.01 v, ok
r ﬁ Gkﬁ

Table 4. Model Features
Model || Dissipation | B. C.of g, | Length | Asymptotic | Parameters | Behaviour of f, |€ near wall| Other features
Equation Scale | feature of v, | used in f,
LS g g =0 PELT 0Gy") Re, Too fast at first
& too slow later
LB E 9e/dy=0 P 0y") Re, & Re, |Slightly too slow
vk later
or e =
dy?
SH [ . k3PE 0(y") Re;; Fine Reaches a| Accounting for
¥ 2v(aJ:7,ray)= maximum |pressure diffusion
. _k? kyt o, WY U
Note: V'-CJ;I?’ g=e-D, Re'-wa Re’=J_v vy —T and REU-W

turbulent pipe flow using Fortran on HP workstations. A
finite volume/finite difference scheme is used and the
calculation is of explicit marching type in time.

4. RESULTS
4.1 Experiments with 3, 6 ,10 and 20 second
transients and LS model simulations

Figure 1 shows measured radial distributions of the
amplitude of velocity modulation in pulsating flows with
various flow pulsation time periods. The time-mean
Reynolds number and amplitude of flow pulsation are
fixed. Also shown in the figure are the corresponding
results from simulations performed using the LS model.
The experimental results show that the variation of
amplitude of velocity modulation exhibits interesting non-
monotonic changes as the time period is varied. In the
core region, the amplitude of velocity modulation first
decreases with the reduction of time period and then for T
< 6s it increases. With higher frequency of pulsation, the
flow in the core region exhibits a slug-like behaviour. As
the frequency is reduced, the extent of this region reduces
and the behaviour disappears for time periods of 6 seconds
and above, The amplitude of velocity modulation reaches
a maximum at a location which shifts towards the centre
of the pipe with the increase of the time period. These
features are in fact similar to those found in laminar
pulsating flows but the time scales involved and some
details of the variation are different. As can be seen from

Figure 1, all the features of the experimental results
identified above are reproduced by the simulations. They
are in particularly good agreement with the experimental
data for the cases of the 3 and 6 second transients.
Although the agreement is less close in the case of the
slower transients, the trends are still clearly predicted.
Figure 2 shows the time delay of the ensemble averaged
velocity relative to the mean flow in experiments with
fixed time mean Reynolds number and peak to mean
amplitude of flow pulsation. Also shown are the
corresponding results from simulations using the LS
model. The experimental results clearly show that in the
faster transients the time delay, or phase shift, in the core
region is close to zero (the pulsation being locked to the
mean flow). With the increase of time period, the extent
of the region where the phase shift is zero reduces and it
disappears in the transients of 6 second period and greater.
It is can be seen that the location of the maximum delay
in the 3 second transient is near to the wall and it moves
away from the wall with the increase of the time period of
the transient. This location shifts to the centre of the pipe
in the slower transients. The numerical simulations
generally reproduce the general trends quite well over the
entire range of frequency. Quantitatively, the predictions
for the slower transients are not in as good agreement with
the data as those for the faster ones. It is worth noting that
both the numerical and experimental results show that the
distributions of the time delay of velocity follow a very
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Figure 1 Amplitude of velocity modulation in pulsating Figure 2 Time delay relative of velocity modulation in
flows with various time periods - comparison between  pulsating flows with various time periods - comparison
experiment and the LS model simulations between experiment and the LS model simulations
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Figure 3 Amplitude of turbulent shear stress in
pulsating flows with various time periods - comparison
between experiment and the LS model simulations
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Figure 4 Time delay of the turbulent shear stress in
pulsating flow with various time periods - comparison
between experiment and the LS model simulations

different pattern from the rest in the case of the 10 and 20
second transients. The location of the minimum delay
shifts away from the wall. It is of interest to note that the
numerical predictions show that the delay peaks a second
time at a location close to the wall (no experimental data
are available in that region).

Figure 3 shows the radial distributions of the amplitude
of modulation of the mean product of the radial and axial
components of the turbulent fluctuations (the turbulent
stress) for various time periods. When the frequency of
flow pulsation is low (the 10 and 20 second time period
cases), the variations of the amplitude of the uv with time
period are very similar to those obtained in the case of
pseudo-steady flows. However, with decrease of the time
period of flow pulsation, the amplitude is reduced. In the
extreme case of a 3 second transient, the amplitude
becomes almost zero over a significant part of the core
region of the flow. The turbulence is frozen in that region.
The numerical predictions again capture the general trends
exhibited by the experimental data, although some
quantitative discrepancies can be seen. These can be
attributed partly to experimental uncertainty.

Figure 4 shows the time delay of the modulations of
turbulent shear stress relative to the imposed flow
pulsation in experiments with various time periods. It can
be seen that the time delay increases with the distance
from the wall over most of the flow. The absolute delay

time is very similar in the 6 and 10 second flow transients.
It is slightly lower in the 20 second transient and
significantly lower in the 3 second one. Whereas the
general patten of the variation of the delay with radial
position is captured fairly well, there are clear quantitative
discrepancies between the numerical predictions of time
delay and the experimental values. The dependency on
frequency of the delay is caprured quite well: the delay
predicted is similar in the 6 and 10 second flow transients
and is lower in the 3 and 20 second cases. The near wall
variations of time delay obtained from the predictions (not
available from the experiment) show that the smallest
delay occurs at a location within a small distance from the
wall and the delay builds up in both directions on moving
away from this location.

4.2 Comparison of simulations using the various
models for the case of a 6 second fransient
Figures 5 and 6 show the radial distribution of the
amplitude and time delay, relative to the imposed flow, of
the velocity modulation for a pulsating flow with a 6
second time period. In each case, simulations using the
three turbulence models are presented along with the
experimental results on the same figure. It can be seen
that, in terms of the radial distribution of amplitude, the
LS model gives results closest to the experimental data
with the LB model performing next best. The simulation
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Flgure 5 Amplitude of velocity modulation in
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Figure 7 Amplitude of turbulent shear stress
in pulsating flow with a 6 second time period

using the SH model is less satisfactory. Its results show
features that we have seen earlier with faster transient
flows. The amplitude does not vary much in the core
region of the flow and peaks at a position which is close
to the wall. In terms of time delay, the predictions of both
the LB and SH models are slightly better than those of the
LS model.

Figures 7 and 8 show both the simulations and
experimental results for amplitude and the time delay of
the turbulent shear siress. The simulations yielded by the
LS and LB meodels lie fairly close to the experimental
points. However, the SH model gives results which are
quite different. It wrongly predicts that the response of the
turbulent shear stress is effectively frozen in the core.

4. CONCLUSIONS

The present simulations of pulsating flow made using the
LS and LB models generally predicted the correct
response of both the mean flow and the mrbulence. The
predictions of amplitude were closer to the experiment
than those of time delay. The two models performed
equally well in the comparative study carried out here.
The SH model was less successful in reproducing observed
behaviour, particularly in the case of turbulent shear stress.
Some interesting information concemning the near wall
response of the flow and turbulence has been yielded by
the simulations.
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