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ABSTRACT

The prediction of the far-field wave pattern of a ship in
shallow water canal is important to assess the wash on the
river banks. In this paper, an approach based on linear
theory is presented. A series of wave-pattern surveys have
been conducted for a series of mathematically defined hull
forms. The wave spectrum predictions are compared with
experimental measurements in deep and shallow water. A
method for the prediction of catamaran wave patterns is
derived and compared with the experimental
measurements.

INTRODUCTION

Prediction of wave resistance of a surface ship by
linearised theory has been utilised satisfactorily for slender
hull forms (Doctors et al 1991, insel et al 1994).
Linearised theory can also be used for the prediction of the
far-field wave pattern, or so called wave wake, behind the
hull. The prediction of the wave pattern is particularly
important in a shallow water canal or river in order to
assess river bank erosion.

Linearised theory of ship waves and ship wave resistance
has been developed since Michell (1898) formulated deep-
water wave resistance. Shallow water and canal wall
effects were investigated by Strettensky (1936) and Lunde
(1951). In this paper, an approach based on linear theory
is used to determine the far-field wave coefficients of a
hull or a multihull as well as the wave resistance.

Eggers (1962) has outlined an approach to measure the
far-field wave pattern of a hull by using a Fourier analysis.
Experimental work has been carried out by using this
analysis technique on a mathematically defined hull form
series in order to asses the adequacy of the calculated
wavemaking in the current work.

FAR-FIELD WAVE SYSTEM IN SHALLOW CANAL
Assuming the fluid is ideal and incompressible, the flow

is steady and irrotational, the linearised boundary

conditions can be expressed in a Cartesian axis system

shown in Figure 1 :

i) Laplace equation

vip - Fb ,  Fb P _, ()

ax?2  ay? @y

ii) Free surface conditions
a) Dynamic free surface condition

gt+Up, =0 at z=0 2)
b)Kinematic free surface condition
U,-¢,=0 at z=0 3
iii) Bottom condition
¢,=0 at z=-H “)
iv) Radiation condition

lim & _/of1) for x<0 (5)
(X2+y2)-om— { 0 for x>0

v) Hull surface condition
Uf,+¢,=0 at y=3fx2) (©)

where the free surface is expressed as z={(x,y) and
geometry of the ship is represented by y=+f(x,z).

The velocity potential of a source with density of p, and
located at (x,,,2y) in shallow water canal with a depth H
and a width W (Figure 1) can be obtained by considering
images due to the tank walls at y;'=y+2mW and y,"’=-
Yo+(2m+1)W for m=-ce..ce of the source and its image due
to the tank bottom at z’=-(2H+z,). The far field velocity
potential of a source can then be found and is given by
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Insel (1990) as;

b= & 3 137 cos(op 7 sin(o] ol
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cosh(K,,H) sinfmmyiW)  for odd m
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w,=K_ cos 8, (11)

where K, and ©_, are solution of
K, -K, sec’®, tanh(K _H)=0and X sin®, =nm/W

The far field wave elevation can be found from dynamic
free surface condition and is given by Insel (1990) as;

Dk, L1 cos(mny/W) for even m (12
€= 2 lgreos(@u)* "800, ipury W) for odd m

For practical calculations m can be truncated at a finite
number M. & and 1, are the amplitudes of the symmetric
wave components relative to the tank centerline,
meanwhile o, and B, are that of the asymmetric wave
components. For a symmetric hull form relative to the
canal centerline, o, and P, are zero. Hence, by
substituting m=2n and (M=2N):

N
¢=Y"1[ &, cos(wx)+ n, sin(w,x)] cos@nmny/W) 13
=0

Thus the wave system of a source at the centerline of the
canal, or a symmetric source distribution, can be
represented by a finite number of discrete wave
components with angle of 8,, wave number of K, wave
frequency of @, and amplitude of {*=/E*+n? (Figure 2).
The use of a finite number of wave components is justified
as the harmonic number (n>20) is increased the angle of
wave reaches very high angles (6,>70).

Evaluation of wave coefficients is performed for a
combination of source-sink distribution where source
strength is derived from thin ship assumption over panels
distributed on the centerplane of the hulls. The numerical
code also includes routines to trim and increase/decrease
draught of the hull form at any speed.

WAVE RESISTANCE OF A SHIP MODEL IN A
SHALLOW CANAL

The wave resistance can be obtained from considerations
of energy changes as given by Insel (1990):

2K,
Rfm[(ﬁﬁmﬁ)(l— off

|
2 5 m,,,J [1-°°326"'(1~ . 2K _H ]]
o1+ B 2 sinh(2K, H)

E,M, and o,B, are amplitude of wave coefficients in
wave resistance due to symmetric and asymmetric wave
pattern respectively.

FAR FIELD WAVE PATTERN OF A CATAMARAN

As a special case a catamaran made up two symmetrical
demihulls is investigated as it is the main concemn for
practical applications. For such a craft, two hulls will be
located at y,=-5/2 and y,=5/2 (Insel 1994):

N

¢=¥ [2€,C, cos(e,x)+21,C, sin(w 2] oos(z"T;"’) (15)
n=0

= EEE[ 201 2Kofl

By= =, (€% +2nH(1 l“.nhaw)) -
N

5 2, 5 "ooszﬂn 2K H }
Zleecovancy|i-—= a mh(zxnﬂ))]

where

Cy=cos(K, 5/2 sin®,)=cos(nnS/W) an

It is also noted that catamaran wave coefficients can also
be obtained by applying experimentally obtained values of
€,M, from the wave pattern analysis of a demihull.

EXPERIMENTAL APPROACH

In order to assess the capabilities of the theoretical
model, comparisons with the experiments must be made.
The common comparison for the theoretical wave
resistance calculation is to compare with the wave
resistance (Cy=C;-(1+k)Cy). But such an approach does
not include the effects of the wave spectrum.

Wave pattern analysis approach given by Eggers (1962)
represents an effective approach to the analysis of the
wave pattern. A method based on multiple longitudinal
cuts (Insel 1990) is adapted for the current experiments.

Two sets of experiments have been conducted. Firstly,
total resistance and wave pattern experiments with a
mathematically defined form (Figure 3), Wigley Hull, have
been conducted both in free and fixed to trim-and-sinkage
conditions. The wave resistance coefficient comparison is
given in Figure 4 for the fixed condition. Linear theory
generally overpredicts the wave resistance. To correct this
feature, a correction method was considered (Doctors 1991,
Doctors 1992). A second set of experiments was conducted
by introducing a parallel middle body to the Wigley
model. Length, beam, draught have been kept constant
resulting in only C,, Cy and angle of entrance change.
Both deep and shallow-water tests have been conducted.

COMPARISON OF MEASURED AND CALCULATED
WAVEMAKING

The wave amplitudes across the wave angle spectrum are
given for two speeds for fixed hull in Figures 5 and 6. The
prediction of linear theory is generally higher than the
experimental wave coefficients for small wave angles,
transverse wave system. A modification to the theoretical
results is applied as a constant multiplier depending only
on the Froude number by using a least-square regression
technique. Although this correction fits well with low wave
angles, predictions for higher angles become too low.

The wave-pattern system generated by the modified
linear theory is demonstrated and compared with the
experimental longitudinal wave traces in Figures 7 and 8.
The phase of the predicted wave pattern is in agreement
with experiments,

As the linear theory is based on fixed-to-trim-and-sinkage
model, a comparison of theory and experiments for the



free condition is conducted by trimming and changing the
draught of the input hull form into the theory. The results
are given in Figure 9 for one Froude number. The results
are in similar agreement to those for the fixed case.

Catamaran configurations of this hull have also been
tested for separation-to-length ratios of 0.2 to 0.5. A
comparison of predicted and measured catamaran wave
amplitude is given in Figure 10. The predictions in this
figure were based on experimental measurements of a
demihull alone. The predictions up to wave angle of 50
degrees are in agreement with experiments, above this
wave angle there are some discrepancies between theory
and experiments.

The shallow water effects were investigated on a
mathematically defined form. Figure 11 demonstrates the
change of wave coefficients with change of water depth.

In practical design work, a comparative study of hull
form variation is the main concern. Hence the second set
of experiments have been utilised to demonstrate the
sensitivity of the linear theory. The wave amplitude across
the wave spectrum for one speed is given in Figure 12.
Predictions display the same trends as the experiments. Le.
the decrease of wave amplitude at transverse waves (low
angles) and increase of wave amplitude at divergent waves
(high angles) with increasing C, are predicted
satisfactorily.

CONCLUSIONS

Linearised theory can be used for the prediction of wave
resistance of slender hull forms in shallow canal. The far-
field wave pattern can also be predicted by this method.
Although the predicted wave amplitude is higher than the
experimental amplitude, the wave phase is in good
agreement.

Effects of trim and sinkage can simply be taken into
account by changing the trim and draught of hull form in
the calculations.

Prediction of catamaran wave pattern from demihull
wave pattern can be conducted satisfactorily.

The effect of hull form changes on the wave pattern can
also be predicted satisfactorily.

Hence, linear theory presents a simple but efficient
approach to predict the far field wave pattern of slender
forms, even in shallow water and canal conditions.
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Figure 2: Angle and Direction of Wave Components

Figure 3: Mathematical Hull
Form (Wigley Hull)
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Figure 4: Wave Resistance of Mathematically
Defined Hull Form
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Figure 5: Wave Amplitude Across the Wave Angle

Spectrum

(Wigley Hull-Fixed to Trim and Sinkage, Fn:0.30)
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Figure 7:Measuredand Calculated Wave Elevations
(Wigley Hull-Fixed to Trim and Sinkage, Fn:0.30)
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Figure 9: Wave Amplitude across the Wave Angle

(Wigley Hull-Free to Trim and Sinkage, Fn:0.50)
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Figure 11: Wave Amplitude in Shallow Water
(Fn:0.50)
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Figure 6: Wave Amplitude across the Wave Angle
Spectrum
(Wigley Hull-Fixed to Trim and Sinkage, Fn:0.50)
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Figure 8: Calculated and Measured Wave Elevations
(Wigley Hull-Fixed to Trim and Sinkage, Fn:0.50)
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Figure 10: Wave Amplitude across the Wave Angle
Spectrum
(Wigley Hull Cat-Fixed to Trim and Sinkage,Fn:0.50)
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Figure 12: Wave Amplitude Change with Hull
Fullness



