Twelfth Australasian Fluid Mechanics Conference 580
The University of Sydney, Australia 1995

SIMULATION OF MIXING FOR INCOMPRESSIBLE FLOW
THROUGH A PERIODICALLY OBSTRUCTED CHANNEL

T. Howes
Department of Chemical Engineering
University of Queensland
Brisbane, Queensland
Australia

E.P.L. Roberts
Department of Chemical Engineering
University of Nottingham
Nottingham
United Kingdom

ABSTRACT

Fluid mixing for constant volumetric flow through a channel containing periodic obstructions has been studied
using a finite-difference simulation to determine fluid velocities, followed by the use of passive marker particle
advection to look at fluid transport and mixing within the channel. For the geometry under consideration, Roberts
(1994) showed there is a transition to time-periodic flow at a Reynolds number of around 100, based on the channel
width and average velocity. These time-periodic flows show a marked increase in the mixing of fluid within the
channel, relative to the steady flow. However it is not until Reynolds numbers of over 180 that efficient mixing of
fluid throughout the channel takes place.

INTRODUCTION

Good mixing and heat/mass transfer are generally the crucial ingredients required for efficient continuous
process engineering units. For sterile operation, the presence of impellers or flow obsructions leads to the possibility
of the build up of degraded material, and to possible difficulties with cleaning. The use of turbulent flow through
a pipe or channel to promote mixing v. heat transfer could cause problems for shear sensitive materials, and
provides little control over the rates of mixing or transport.

Figure 1 shows the channel geometry. Distance is scaled using the channel width, H. There are two geometrical
parameters, the scaled height of the obstructions, 7/H and the scaled spacing of the obstructions, L/H. For
all of the calculations presented in this paper, T/H = 0.25 and L/H = 1.5. There is one flow parameter, the

Reynolds number, Re = pVH/,u, where p and p are the fluid density and viscosity, respectively, and V the
cross-sectional mean velocity. Velocities are scaled using V' and times are scaled using H/V.
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Figure 1. Channel geometry
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FLOW PATTERNS

The flow velocities have been calculated using a finite-difference formulation of the vorticity transport and
Poisson equations. The scheme is described in detail by Roberts (1994). A grid of size 64 x 61 over one cell
of the channel was used, and the flow assumed to be two-dimensional and spatially periodic in the z direction.
Numerical and experimental justifications for these assumptions are given in Roberts (1992).

For Reynolds numbers below 100, the flow is steady, and is characterised by slow moving recirculating regions
forming downstream of each of the baffles. Figure 2 shows velocity vectors for Re = 90. Above a Reynolds number
of 100, the flow becomes unsteady, due to the amplification of Tollmien-Schlichting waves by the presence of the
obstructions. Figure 3(a-f) shows velocity vectors for Re = 120. The flow is time-periodic, with a dimensionless
time period, 7 A2 2.18 The flow is characterised by the motion of the recirculating regions downstream until they
impinge on the next baffle. The figure shows flow over a period of 7/2, with Figure 3(f) being the mirror across
the channel centerline of Figure 3(a).

Similar transitions to time dependent flow in channels have been observed by Zhang and Tangborn (1994)
for a mixed convection flow, and Ghaddar et. al. (1987) for flow in a grooved channel. For Reynolds numbers
studied in this report (less than 210), the time dependent solutions are all time-periodic with 7 a weak function
of the Reynolds number. These flows are also symmetric in time, with U(z,y,t + 7/2) = U(z,1 — y,t) and
V(z,y,t+7/2) = —=V(z,1—y,t). U and V are the axial and cross-channel velocities, respectively.

Figure 3. Velocity vectors, Re =120. (a) - (f) show one half-period of the flow.

PARTICLE TRACKING

We introduce ideal (massless) particles into this flow. The instantaneous particle velocity is just that of
the local velocity field, so that the position of each particle is represented by dX(t)/dt = v(X,t), where
X(t) = (z(t),y(t)) is the position of the particle at time ¢. This ODE is solved independently for each particle
using a fourth-order Runge-Kutta technique. The timestep used for the particle advection calculations is twice
the timestep used for the calculations of velocity. For steady flow, the fluid particles simply follow the streamlines.
When the flow is unsteady, the particle motion becomes more complicated.

Figure 4 shows the motion of a ‘blob’ of fluid in channel, described using 2500 particles. The initial position
of the blob is shown in Figure 4(a). Figures 4(b)-(f) show the position of the blob at a scaled time of 40, for
Reynolds numbers ranging from 90 to 210. Particles which had been swept downstream out of the visible channel
were re-injected at the same local position, but in the cell which originally contained the blob. For the steady
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flow (Re = 90), the blob has been stretched due to its motion within the recircuating region, but has not been
extensively mixed. For the time-periodic flows, at the lower Reynolds numbers (Re = 120, 150 and 180), while
there is considerable mixing in parts of the channel, the particles in the blob have still not been able to mix with
fluid in the top half of the channel. This restriction on the range of mixing has disappeared when Re = 210.

Figure 4. Motion of a ‘blob’ of fluid: (a) Initial position, (b) Re = 90, (c) Re = 120,
(d) Re = 150, (e) Re = 180, (f) Re = 210.

Poincaré Sections of the flows have been determined in order to further investigate the mixing process. A
detailed description of the generation of Poincaré sections for unsteady and spatially periodic flows is found in
Ottino (1989). In the case of time periodic systems, the technique amounts to taking stroboscopic pictures at
periodic intervals 7,27, 37, ..... ; etec, using an overlay technique which gives the particle’s local position in a
spatially periodic system (Howes et. al. 1991). Superimposing all pictures on one surface makes up the Poincaré
section. Particles with regular movement each period form lines on a Poincaré section whereas chaotic particles
become randomly distributed on the Poincaré section. Particles in a chaotic region show high rates of mixing,
while those in regular regions do not. Furthermore, it is impossible for fluid to advect across regular regions.
Heat and concentration can diffuse across regular regions, so they provide a barrier to transport and represent
regions of inefficient mixing in the flow. These techniques have been recently used by Tangborn ef. al. (1995) to
investigate mixing in a two-dimensional mixed convection flow.

Figure 5 shows Poincaré sections for Re = 140, 160 and 180. The existance and size of these barriers can be
clearly seen in this figure for the lower two values for the Reynolds number. These barriers take the form of regular
regions that meander through the center of the channel, effectively dividing the fluid at the top and bottom of
the channel. The width of the regular region decreases as the Reynolds number increases. When the Reynolds
number is 180, there are no regular regions in the channel. However, the fluid still cannot fully mix across the
entire width of the channel. Hence the lack of regular regions is a neccessary but not sufficient condition for
effective mixing. Further tools will be required to study this barrier for mixing for the higher Reynolds number
flow.
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Figure 5. Poincaré sections for time-periodic flows: (a) Re = 140, (b) Re = 160, (c) Re = 180.
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