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ABSTRACT

We propose and study a new criterion based on the
vorticity field properties, in order to define and
characterize more precisely vortices (organized
structures) in two-dimensional incompressible flows.
This criterion is compared with the Weiss criterion.
Analytical derivations and numerical studies bring more
insights into the viscous vorticity dissipation process.

BASIC EQUATIONS

We consider a two-dimensional incompressible flow;
we introduce a stream function 1 (x,y,.t) and the
vorticity field w(x,y,t) such that

0
u(x,y,t) = - % (x,y.t)

v(x,y,t) = o (x,y.t)
ox

oEyt)= V2y(xy.h
where (x,y) denotes cartesian coordinates, t is the time
and (u,v) are the velocity components.

By applying the curl and the divergence operators to
the Navier-Stokes equation, we obtain
(1) iu_)_'_a_\pa_m_a_ipa_m_vvzm

ot ax dy dy dx
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dax? ay? \ox ay
where P(x,y,t) is the pressure field.
The study here proposed is a kinematic one: time is
fixed and remains equal to to ; consequently in all the

functions involved we no more specify the time
variable.

We first recall some elementary results about
functions which will be usefull later: if f(x,y) is a given
(regular enough) real function, we consider the corres-
ponding Hessian function
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- First property: The weak extrema of Il Vf |12 are
defined by the condition : V( Il Vf112) = 0 which results
in a linear homogeous system of equations satisfied by

the components of Vf. These weak extrema are different
from zero if and only if H(f) is equal to zero,

- Second property: The sign of H(f) is the same as the
sign of the Gaussian curvature of the surface (S) defined
by z = f(x,y) in the three-dimensional space.
Consequently the regions defined by H(f) > 0 are the
only ones which contain closed and convex f-isolines.

- Third property: If f satisfies elliptical symmetry
properties, i.e. f(x,y) = g(p) with x =apcosrt,
y = bpsint, then:

@ v’ (g [cos T sin -.;}

(4) HO=-1-gp) g"p)= (')
abp

l_i
2ab p dp

STREAM FUNCTION, VELOCITY
AND WEISS CRITERION
Here f is equal to the stream function Y (x,y,t,). The

Weiss criterion H@y) > 0 (Weiss, 1981, 1991) has been
extensively used in order to identify organized
structures (Chong et al., 1990, Jeong and Hussain,
1994). It is based on dynamical arguments and, at least
for two-dimensional flows, the validity of these
arguments appears to be limited (Basdevant and
Philipovitch, 1994). For 2-D flows, it can be recovered
in a geometrical way without any restriction: these
structures are characterized by closed convex streamline
structures owing to the "second property" previously

FIELD



844

quoted.

It is well known that such structures can be found in
low pressure regions, but never exist in high pressure
regions. This result can be analytically derived from the
relation (2) V2P = 2H(p) (Larchevéque 1993).

Moreover the points defined by H(y) = 0 correspond
to weak extremum values for the kinetic energy HVuJII2
and appear to be exactly local maxima of llleII2 if P
satisfies elliptical symmetry properties, according to
the relations (3) and (4). We may notice that in that
case IIV1pII2 is equal to zero in the central point of the
elliptical structure.

VORTICITY FIELD AND VORTICITY
DISSIPATION

Now f is equal to (x,y,ty). The Hessian function

H(w) introduces a new criterion for the identification of
vortices. This criterion has been proposed by
Larchevéque (1993) and brings a topological definition
of vortices: such vortices correspond to closed convex
isovorticity lines; they are embedded in the flow
regions characterized by H(w) > 0 (second property
recalled in § 1). Like the Weiss criterion, this criterion
satisfies Galilean invariance and is more closely related
to the small scale details of the flow than the Weiss
criterion is.

By exchanging the stream function into the vorticity
function, the same kind of analytical derivations show
that all the points of the flow defined by the condition
H(w) =0 are associated with weak extremum values for
IIVwll. When o exhibits elliptical symmetry properties,
the points corresponding to the condition H(w) =0
define local maximum values of IVwll. We can conclude
that, at least for elliptical vortices, the condition
H(w) > 0 better educes the vortex cores than the Weiss
criterion does since, following Dritschel (1993), the
vortex edge can be defined by the location of the peaks
of the vorticity gradient.

Now we consider the viscous dissipation of the
squared vorticity for structures exhibiting an elliptical
symmetry. The equation (1) leads to

5) dimz- o Ve = vVie?- 2v Vel
t

where dA denotes the material derivative.
t

At the central point of such structures, the gradients
of V2w and VZm? are equal to zero as an outcome of
symmetry properties. It will appear from numerical
studies that ®V2w and V2w? take negative values in the
vortex cores, with peaks for their absolute values at the
vortex central points when Vw is equal to zero: the
local squared vorticity dissipation exhibits a maximum
efficiency in the vortex core while the contribution
IV @ll? from this region to the enstrophy dissipation
(half mean squared vorticity) is very low.

NUMERICAL STUDIES
We investigate 2-D mixing layer, 2-D Taylor-Green

vortex and decaying turbulent flows by performing
direct numerical simulations of the two-dimensional
Navier-Stokes equation (we do not introduce
hyperviscosity). The characteristics of the runs are the
following ones:

- First we consider a temporal mixing layer with
periodic boundary conditions in the x-direction and slip
boundary conditions in the y-direction. The numerical
model is a pseudo-spectral one with 512x513 grid
points; a third Adams-Bashforth scheme is used for time
marching. The initial velocity profile is an error
function with two sine pertubations, and the Reynolds
number is equal to 200. The final state is a single
vortex resulting from the pairing of two vortices (figure
1).

- The 2-D Taylor-vortex run is defined by a 2-D
decaying turbulent flow in a 1025x1025 square box
with slip boundary conditions. The numerical model
remains a pseudo-spectral one with a third Adams-
Bashforth time scheme. The initial flow is a 7x7
Taylor-Green vortex stream function which is
destabilized by a white noise of small amplitude. Here
the Reynolds number is equal to 800. We reache a final
state comprising three vortices (figure 2). The two
biggest one exhibit a quasi elliptical shape only in
their central part.

- In the third run we perform a direct numerical
simulation of decaying turbulence in a 1024x1024
square box with periodic conditions. Here again the
numerical model is a pseudo-spectral one with a third
Adams-Bashforth time scheme. The initial velocity
field isa zero-mean Gaussian random function with an
energy spectrum E(k,t=0) = C k exp[ - (k/k, )2 ] where
ko =8 and C = 0.2. The Reynolds number is equal to
1000 and the final stage of the flow evolution is a two
vortex state (figure 3).
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FIGURE 1

2-D MIXING LAYER AFTER VORTEX PAIRING
ISOVORTICITY LINES
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FIGURE 2
2-D TAYLOR-GREEN VORTICES
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FIGURE 3
DECAYING TURBULENT FLOW
ISOVORTICITY LINES

The numerical results obtained are summarized by the
figures 4 to 6 which display the variations of w, H(y),
1Vl12, H(w), V2w, - IVoll2 and V2w?/2 in the flows
along a straight line D which is drawn on the figures 1
to 3. These different quantities are normalized by the
maximum of their absolute values along D, except for
IVw!i?2 and VZw?2/2 which are normalized by
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max(lwVZml).

The three different runs are in very good agreement
with the analytical results peviously developped; in
particular lIVwl|? exhibits extremum values when H(w)
becomes equal to zero, even when the structure is not
exactly an elliptical one. The central part of the
vortices defined by H(w) > 0 is narrower than the center
part defined by H(1) > 0. The H(w) criterion appears to
define more precisely the core of the vortices than the
Weiss criterion does.

Moreover for the three runs V2w?/2, which reaches
extremun negative values at the central point of the
vortices, becomes equal to zero near the edges H(w) =0
of these vortices. As [IVoll is equal to zero at the central
point of the vortices and exhibits maximum values on
the vortex edges, the main part of the contribution of
these vortices to the the viscous vorticity dissipation
comes from the VZw?/2 term in their central part and
from [IVwll? near their edges. We recall that this last
term is the only one which brings a contribution to the

flow enstrophy dissipation in homogeneous
turbulence.
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2-D MIXING LAYER AFTER VORTEX PAIRING
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2-D TAYLOR-GREEN VORTICES
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FIGURE 6
DECAYING TURBULENT FLOW
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CONCLUSION

Analytical and numerical derivations show that the
new vorticity criterion proposed here defines the vortex
edge by peaks of vorticity gradients and better
identifies the core of the two-dimensional vortices than
the Weiss criterion does. We have also established that
the kinetic energy of the flow exhibits peaks at zero
pressure Laplacian values when the stream function
satisfies elliptical symmetry properties. The different
contributions to the viscous dissipation of vorticity in
the vortex cores have been also analysed. Nevertheless
all these derivations do not bring new information
about constant vorticity vortices such as the vortices
studied by Kida (1981).
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