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ABSTRACT

Numerical and experimental investigations of vortex
breakdown in a torsionally driven cylindrical cavity
flow have been undertaken. It is demonstrated that
the approach to numerical convergence is strongly de-
pedent on whether grid compression near the rotat-
ing lid is included. In the case of a uniform mesh,
for the Reynolds number considered, increasing the
grid resolution leads to the appearance of initially
fewer recirculation regions and then an increase. This
non-monotonic route to convergence was not observed
when the Ekman layer was better resolved using grid
compression at the rotating lid. Measurement uncer-
tainties associated with rheometers leads to an uncer-
tainty in the viscosity and hence the Reynolds num-
ber of the flow. It is demonstrated that compari-
son of predicted flow patterns at nominally the same
Reynolds number can be misleading; what is termed
validation in these circumstances is at best coinciden-
tal.

INTRODUCTION

It is common, and commendable, to find published
papers increasingly containing validating experiments
for numerical predictions. In the absence of such vali-
dation, predictions may lack conviction due to the nu-
merous possible sources of error, such as inadequate
modelling, incorrect coding, and insufficient mesh res-
olution.

Where experimental results are available for valida-
tion, or otherwise, of predictions, conclusions reached
follow a certain pattern. Divergence between obser-
vation and prediction is usually described as experi-
mental error (by numericists) or simplistic modelling
(by experimentalists). As the two sets of results con-
verge, analysis of possible errors diminishes until in
the case of precise agreement, little analysis of errors
is presented and it is assumed that both sets of results

are correct.

It is the purpose of this paper to demonstrate
that the ‘holy grail’ of perfect experimental valida-
tion sought by numericists can result in some selec-
tivity of presentation and possibly deluded confidence
in the results. Specifically, we show that ‘inaccurate’
experimental results can match ‘inaccurate’ predic-
tions. The particular flow investigated, the torsion-
ally driven cylindrical cavity flow, is simple in ge-
ometry and well defined; it has fixed or well spec-
ified rotating boundaries and is of a steady nature
at the Reynolds numbers considered. This flow has
been studied widely in recent times, both experimen-
tally and computationally (e.g., Escudier, 1984, 1988;
Lopez, 1988; Brown and Lopez, 1990; Lopez and
Perry, 1992). One of the important characteristics of
the flow is the appearance of one or more bubble-type
vortex breakdown regions as the Reynolds number is
increased.

Problems in interpreting another aspect of the tor-
sionally driven cavity have been highlighted in a pre-
vious paper (Hourigan et al, 1995); the investiga-
tion of streaklines for steady swirling flow in a lid-
driven cylinder just prior to vortex breakdown was
presented. It was demonstrated that the appear-
ance of regions of wiggles on the otherwise seemingly
straight central dye streakline is due to small, and
almost inevitable, offsets in the injection of the dye
at the stationary end disk. Previously, the appear-
ance of these wiggles was thought to have been due
to unsteadiness or asymmetry in the flow.

In the following, we demonstrate that the use of
a uniform grid system for the numerical modelling of
the swirling flow can lead to a non-montonic approach
to the converged solution. An apparent matching of
prediction and observation can occur at relatively low
grid resolution. A further complication arises in that
the viscosity of the fluid used for the experiments is
not known to better than a 5% error; this translates
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to a comparable uncertainty in the Reynolds number.
Significant changes in the flow structure can appear
for changes in the Reynolds number of this order. It is
therefore problematical whether an ‘accurate’ numer-
ical prediction will be ‘validated’ by an observation.
We show that an ‘inaccurate’ prediction can match
an ‘inaccurate’ measurement; conversely, an accurate
prediction may be ‘invalidated’ by an observation.

EXPERIMENTAL EQUIPMENT
A brief outline of the design of the swirling rig used
is presented here.

The radius of the cylinder was 0.070 m. The rig
included a water bath which reduced optical distor-
tion and also maintained a stable temperature in the
working fluid. The rotating lid at the bottom was
driven by an electric motor with a choice of reduction
gearbox or direct belt drive to give a wide range of
speeds up to over 1400 rpm.

Photographs were taken using a Nikon FM2 35 mm
camera fitted with a 58 mm Nikkor Noct lens. Dye
injection was used to visualise the structures. The
dye was a small quantity of flourescein powder dis-
solved in some of the working fluid and was injected
by means of a hypodermic syringe through a small di-
ameter hose leading to a hole of diameter 0.5 mm in
the centre of the fixed lid. Care was taken to ensure
that the dye was injected at a rate that did not dis-
turb the main flow. Hlumination was by a Coherent
Highlight argon-ion laser which was piped to the rig
by a fibre optic cable and expanded into a light sheet
by a cylindrical lens.

The fluid used for the present work was a solution
of glycerol in water with 76% by weight of glycerol.
The density of the fluid was 1197.6 kg m ®. The
viscosity was measured using a Contraves Rheomat
108 and was 0.044 + 0.001 Pa s.

The Reynolds number for the swirling flow is de-
fined as Re = (pQ2R?)/u, where p is the density, 0 the
angular speed of the lid, R the radius of the cylinder
and g the fluid viscosity.

NUMERICAL METHOD

The Galerkin finite-element method was used to ob-
tain the solution of the Navier-stokes equations for
axisymmetric flow in cylindrical coordinates. Two
grid systems were used; one consisted of uniform rect-
angular elements; the other possessed the added fea-
ture of a sinusoidal compression of the first five nodes
near the rotating lid. This compression was included
to test the effect of better resclving the Ekman layer.
The penalty formulation with biquadratic Lagrangian
interpolation for the velocity field and discontinu-
ous bilinear Lagrangian interpolation for the pressure
field was employed. The nonlinear set of equations
was solved by Newton iteration, with the stopping
criterion being when the norm of the velocity differ-
ences was less than 107¢.

RESULTS AND DISCUSSION

Figure 1 shows flow visualisation results for a height
to radius ratio of 3.5. The Reynolds number increases
by slightly less than 5% yet there is a significant dif-
ference in the flow structure. At Re = 2.957 x 10* the
visualisation shows only one clearly identifiable (and
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Fig. 1(b) Re = 3.031 x 10°
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Fig. 1(c) Re = 3.092 x 10°

Fig 1. Photograph (reverse image) of observed streaklines
for different Reynolds numbers. Bottom lid is rotating,
top lid is fixed. Dye is injected nominally at the centre of
the top lid.

weak) recirculation zone. About a quarter of the way
down the centre of the cylinder and also just above
the recirculation zone are pre-breakdown spirals simi-
lar to those reported by Hourigan et al (1995). These
develop into recirculation zones as the Reynolds num-
ber increases.

Figure 2 shows the streamlines obtained for the
case of a uniform grid of increasing number of nodes.
It is seen that as the number of nodes increases,
the top recirculation bubble disappears and reappears
again when a higher number of nodes are used. Figure
3 shows the corresponding results for the compressed
grid with Fig. 3d illustrating the resolved prediction.
Note that the recirculation pattern, for an unresolved
prediction, in Fig. 2c (at Re = 2.95x%10°) quite closely
matches the experimental result at Re = 2.957 x 10°,
Fig. 1a.

The converged result of Fig. 3d implies that the
experimental Reynolds numbers are slightly too low
although this amount would still be within the ex-
perimental error quoted. Hence care has to be taken
when comparing computations with experimental re-
sults with non-zero experimental error as this can
lead to erroneous conclusions about the correctness
of simulations when the convergence process is not
completely understood.
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Fig. 2 Predicted half-flow streamlines for increasing mesh
sizes with a uniform mesh. Re = 2.95 x 10°.
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Fig. 3 Predicted half-flow streamlines for increasing mesh
sizes with a mesh compressed near the rotating lid. Re =
2.95 x 10°,



298

The plot of maximum streamfunction as a func-
tion of the number of nodes employed is shown in
Fig. 4. It is seen that the approach to convergence
is nonmonotonic for a uniform grid; in fact a nom-
inally correct value of streamfunction (based on the
converged compressed grid result) and hence flowfield
is obtained at a much lower number of nodes than re-
quired for true convergence. If the flowfield at this
resolution was compared to a ‘correct’ flow visuali-
sation one may be fooled into thinking that one had
also a ‘correct’ simulation when this is clearly not the
case.
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Fig. 4 Plot of predicted maximum streamfunction value
versus number of nodes for the uniform grid and com-
pressed grids.

The Ekman layer on the rotating lid has a thick-
ness of the order Re™!/? times cylinder radius; in the
present study, this thickness is less than one hun-
dredth of the axial dimension of the cavity. Fig-
ure 2b is a case where the axial node spacing is ap-
proximately the size of the Ekman layer; it shows a
solution with two recirculation zones similar to the
fully resolved solution of Fig. 3d. It also has a maxi-
mum streamfunction value similar to the resolved so-
lution. Further refinement of the mesh however leads
to deviation of character of the flow and the max-
imum streamfunction value from the resolved case
(e.g. compare the single recirculation zone of Fig. 2¢
with the two recirculation regions of the resolved case
in Fig. 3d. ) Eventually, as the Ekman layer begins to
be better resolved with nodes appearing in the layer,
the maximum streamfunction value for the uniform
grid solution is seen to approach the resolved solution
with a compressed mesh. The number and size of the
recirculation regions also becomes similar (compare
Fig. 2d to Fig. 3d).

Finally, the highly inaccurate solution of Fig. 2a for
a coarse mesh shows 3 recirculation regions, similar
to the observation at a higher Reynolds number in
Fig. lc. This demonstrates that matching predicted
and observed flow patterns alone without considering
the accuracy of the predictions or the uncertainty in
the experiments can lead to illusionary validation.

CONCLUSIONS

An experimental and numerical study has been un-
dertaken of the torsionally driven cylindrical cavity
flow. It is found that the typically used uniform mesh
may not resolve the Ekman layer; however, there is
an apparent matching for coarser meshes with the
final resolved solution. As the mesh is further re-
fined, the predicted flow characteristics, such as num-
ber and size of recirculation regions, begin to dif-
fer significantly from the resolved solution. Further
mesh refinement leads to a return to the characteris-
tics of the fully resolved solution. Using a compressed
mesh where nodes appear in the Ekman layer at much
coarser meshes, the solution approaches the resolved
solution faster and in a monotonic manner.

The validation of the predicted flow patterns with
experimental observations can be illusionary if ac-
count is not made of experimental errors in deter-
mining, say, the viscosity of the fluid used. For wa-
ter/glycerol mixtures, the consequent error in deter-
mining the Reynolds number may be as large as 5%;
the characteristics of the flow can change dramatically
over even such a small Reynolds number difference.
This leads to the possibility of having an inaccurate
prediction validated by an observation at an impre-
cisely determined Reynolds number.
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