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INTRODUCTION

Experimentally derived results for the transient natural
convection adjacent to an isothermal, semi-infinite, vertical
plate whose temperature is instantaneously incremented by
AT above that of the unstratified ambient fluid are
presented. The motivation for the work is for later
comparison with the unsteady convective boundary layers
adjacent the vertical sidewalls of rectangular cavities . The
emphasis here is given to the start up of the flow, and the
transition to steady state for the classical semi-infinite plate
problem.

EXPERIMENTAL SETUP

To model a semi-infinite plate, we modified an existing
square cavity rig, (for full details of pre-existing rig sece
Patterson & Armfield 1990). Briefly the cavity had a 2-
dimensional working region of 24x24c¢m and extended
50cm in the 3rd dimension. The two vertical sidewalls
were of 1.15 mm thick copper, approximating perfect
conductors relative to the water. All other walls consist of
thick perspex, approximating perfect insulators. Behind
both the copper plates are large water filled reservoirs
whose temperatures are controllable with heater circulators
and coolers. Pneumatically driven, raiseable gates make it
possible to restrain the water of these reservoirs from
making contact with the copper plates. The temperature of
the air gap between the gate and the copper plate was
maintained at the cavity temperature with water carrying
copper tubing (heat exchanger) attached to the gate.

To simulate the semi-infinite plate, one copper wall was
replaced with a composite perspex and copper wall, with a
total length of 31.5 cm. The lower 7.5 ¢cm of the wall was
perspex, with a smooth transition to copper, simulating the
leading edge of the plate.

The water within the cavity then became the ambient, its
temperature being regulated by the reservoir behind the
unused copper sidewall. The water of the reservoir behind
the active copper plate at some raised temperature above
the ambient was used to increase the copper plate

temperature by AT after start-up (ie the raising of the
gate).

Four fast response (7ms) thermistors were placed at
distances of 1-3mm out from the plate (y-dir) and at
heights of 3-21cm up the plate (x-dir), and another placed
in the centre of the cavity. The sampling frequency in all
experiments was 10 Hz. Three “flat type” thermistors
were sealed to the copper plate, to gain the actual copper
plate temperature.

RESULTS/ DISCUSSION

The results obtained are in the form of temperature time
series. In this paper nine experiments are reported, in
which the temperature difference achieved ranged from 1-
6°C. Figure 1 illustrates typical behaviour, which is
consistent over the full range of experiments. At each
height, we see an initial period for which the temperature
follows the analytical solution for a doubly infinite plate of
the form:

T(y,1) = ATerfo(—=)
Jaxt

Where y is the distance out from the plate, K is the thermal
diffusivity and t is time. This flow has no x-dependence in
either temperature or velocity. The presence of the leading
edge however forces a variation in x. Hence at each
location along the plate there exists a finite time (prior to
the arrival of information of the leading edge) for which the
flow is governed by the one-dimensional, doubly infinite
plate solution. Upon arrival of the leading edge signal the
flow undergoes a complex adjustment, causing a
conversion to the steady state, two dimensional boundary
layer flow given by Ostrach (1982).  This transition is
characterised by a complex oscillatory signal.

The measurement of thermistor location is only
accurate to (.5 mm, however, for a given thermistor we
can improve the estimate of its true distance out from the
plate by substitution of both its final “steady” temperature
and the measured distance up the plate into the numerically
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determined, steady-state Ostrach solution. This refined
estimate for distance out from the plate was used for the
analysis. Note that although the measured distance up the
plate is only accurate to 0.5 mm the steady-state
temperature profiles are not nearly as sensitive to the
distance up the plate as they are to the distance out from
the plate.

11:57C ff achieved

28.5+

Temperature ( C)

location up the Cu plate (cm) R0 physical ime (s)

Figure 1: TEMPERATURE TIME SERIES FOR
FOUR THERMISTORS AT VARIOUS
LOCATIONS UP THE PLATE.
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Figure 2: EARLY TIME TEMPERATURE
TRACE AND 1-D SOLUTION.

Figure 2 shows the temperature time series acquired
from a thermistor located 8.6 cm up the plate and 3.42mm
out from the plate, and also the corresponding one
dimensional solution for that y-location. We see that the
temperature time series diverges from the one dimensional
solution quite early, indicating that information of the
leading edge has arrived at that time. Beyond this time of
divergence convective effects set in. Exactly how that
information is conveyed from the leading edge is poorly
understood. Various models have been put forward by
Goldstein & Briggs (1964), Brown & Riley (1973), Nanbu
(1971) and Armfield & Patterson (1992). An early theory
(Goldstein & Briggs, 1964) suggested that it travelled with
the maximum velocity in the developing one dimensional
boundary layer, whereby the penetration distance is given

by
Xp = -rumudt
0

where U, is the maximum velocity of the 1-D solution
and x;, is the penetration distance of information travelling
at Up,,. The arrival time of information of the leading edge
had it travelled in the manner proposed is given by the
vertical line in figure 2, which demonstrates that this model
predicts the arrival time to be much later than that
determined experimentally. This finding supports the
argument put forward by Armfield & Patterson (1992) that
the leading edge signal is in actual fact a travelling wave
instability of the one dimensional unsteady boundary layer,
which yields shorter arrival times.

A feature clearly distinguishable in all the time series is a
group of nearly sinusoidal waves (refer again to figure 1)
which exist just prior to the final steady state temperature.
These waves can be seen to amplify with distance up the
boundary layer. Their frequency, as determined from Fast
Fourier Transform techniques (which compared very well
with hand measured peak to peak estimates), is plotted in
figure 3 versus AT, which illustrates that the frequency
increases with AT. Similar plotting of AT versus distance
up the plate produced widely scattered data, indicating
that the frequency does not alter with distance up the plate.
It is envisaged therefore that these waves are travelling
instabilities of constant frequency on a transitional flow
between the one dimensional, unsteady flow and the two-
dimensional, steady state flow. The presence of these
waves for all experiments demonstrates that they are
intrinsically related to the transition mechanism
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Figure 3: FREQUENCY OF WAVE GROUP VS
APPLIED TEMPERATURE DIFFERENCE.

A model for the time to reach the final steady
state temperature was given in an early scaling of the
problem in rectangular cavities by Patterson and Imberger
(1980). Extending their analysis to the semi-infinite plate,
here using a local Rayleigh number based on distance up
the plate, an x-dependent time scale is obtainable for
reaching a conduction - convection balance in the heat

equation:
Pr
T=_[X
gUAT

Where x is the distance up the plate, g is the gravitational
acceleration, o is the thermal expansivity, AT is the
temperature difference and Pr is the prandtl number. In
figure 4, the time to reach the steady state temperature, as
given by that time immediately following the passing of the
wave group is plotted vs this scaling estimate. This shows




an excellent fit to a straight line, suggesting that the scaling
is applicable, with a scaling factor of four.

CONCLUSIONS

Although more experiments and further analysis of the
experimental data set reported here are underway, already
much has been ascertained. These experiments confirm
that estimates of the arrival time of information of the
leading edge, based on the maximum flow velocity of the
one dimensional boundary layer yields arrival time
estimates which are too long. The frequency of the waves
is a function of the applied temperature difference of the
experiment only. This is consistent with the observations
and calculations for the steady boundary layer reported by
Gebhart and Mahajan (1975). The scaling estimate for
time to reach the steady state, two dimensional boundary
layer is confirmed by the data.
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Figure 4: MEASURED TIME TO REACH
STEADY STATE VS TIME SCALE FROM
PATTERSON & IMBERGER 1980.
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