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ABSTRACT

Cup anemometers and wind vanes do not respond
perfectly to wind speed and direction changes, as both
instruments exhibit finite time constants. Some form of
correction is therefore necessary if actual or instantaneous
wind speed and direction is required. This paper presents a
method to infer these from filters based on the
instrument’s dynamic step responses.

Following a series of step response experiments, carried
out on a cup anemometer and wind vane used for wind
turbine research, the responses were categorised by fitting
equations of motion. As the wind vane's frequency
response was an order of magnitude faster than the
turbine’s yaw movements, only a simple smoothing
correction was applied to wind direction measurements.
However, as the anemometer time constant was similar to
the turbine, more complex corrections were needed for
wind speed, and this was accomplished through a state
space system approach. The resulting discrete time
estimator was applied to anemometer measurements with
corrections proving reasonably small, and found generally
not to influence turbine parameters appreciably. For
specific cases corrections may however be more
important.

INTRODUCTION

According to Eggleston and Stoddard (1987), it is
difficult to predict the flow through a turbine rotor in the
field as spatial fluctuations are generally large between
measurement point and rotor plane. This view is
compounded if the instruments also exhibit non-zero time
constants, T; then the original measurements exhibit errors
whose size depend largely on the time scale of interest, the
frequency, ®, and amplitude, AU_, of the fluctuations.
This paper presents methods used to deal with these errors
and used to predict actual instantaneous wind speed, U_,
and direction, By, from measurements taken during wind
turbine research.

During 1994-95 a prototype 5kW horizontal axis wind
turbine was field tested at the University of Newcastle,

Clausen et. al (1992). A meteorological station was
included at the testing site in accordance with recognised
turbine testing standards, Frandsen and Pederson (1990).
This station consisted of a Synchrotac 710 series cup
anemometer and wind vane, shown in Figure 1, which
were attached one metre apart on an arm centred on top of
a mast, and about two rotor diameters from and level with
the axis of the turbine, which was about 10m above the
local ground level.

These instruments cannot respond perfectly to changes
in U_ and By, so to estimate errors in measurements the
dynamic response of each was tested in a wind tunnel;
later, as testing requirements of the turbine required
instantaneous measurements, the dynamic responses were
used to predict actual U_ and By,.

FIGURE 1. Anemometer and wind vane. Dimensions in mm.

DYNAMIC TESTS

Cup anemometers and wind vanes are typically tested by
recording their responses to known wind changes, usually
a simple step change, and then fitting to a dynamic
equation, Ebert & Wood (1994) and Wyngaard (1981).
Wind vanes usually show a damped second order
response, and are categorised by damping ratio, £, and
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sometimes damped natural frequency, ;. Our wind vane
was tested in the open working section of a wind tunnel by
yawing the vane to an angle, 8, releasing it, and recording
the response. The tunnel velocity, U,, was kept constant,
and voltages from the wind vanes potentiometer were read
and stored digitally using a 12 bit analog to digital board
and a personal computer. Categorised responses are shown
in Figure 2 in terms of  and w4 The vane showed an
almost constant { of about 0.25, and wy varied linearly
with wind speed; these results are typical for wind vanes
and compared favourably with a range of commercial
vanes tested by Finkelstein (1980).

Cup anemometers under small fluctuations usually
exhibit a linear first order response, with T == U,. Non-
linearities however cause them to respond faster to
increases than decreases in U, causing overspeeding or
“overrunning”. Wyngaard details a number of general
dynamic equations, but we chose the method of Hyson
(1972) primarily because of its simple experimental
method. Hyson derived an equation of motion for a cup
anemometer with negligible bearing friction by equating
Newton’s first law with an aerodynamic cup force, and
expressed this as,

1 du, _ pa2m2@_|:_r’i_(u"J :| o
q.

U dt I Un Uﬂ-

where I is the moment of inertia, p the air density, r the
cup centre radius, a the cup radius, and u. the rotational
speed in m/s; the subscript eq. represents a point at

equilibrium. The constant /@B can be found by

subjecting the anemometer to step speed increases and
decreases and measuring the response. For our
anemometer this was done in the open working section of
a wind tunnel by opening or closing the tunnel entrance.
One step increase or decrease was one experiment, with
anemometer output read with the same data acquisition
system as used for the wind vane with sampling started
before the step, and proceeding until anemometer
equilibrium was reached. For all experiments the tunnel
response time was better than 0.3s which was generally an
order of magnitude faster than the anemometer.

A number of experiments were conducted including step
increases from u, = 0, some initial u., and step decreases,
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FIGURE 2. Wind vane dynamic response as damping ratio
() and damped natural frequency (w,) for varying wind
speed (U ). Large symbols are {, small symbols o, and
lines are least squares fit for each. Data taken using various
angle of release (8,) given in the figure,

and the measured accelerations are shown in Figure 3 as a
function of the departure from equilibrium of u/U,; here
the relationship between u, and U, at equilibrium was
found by applying a small reflective strip to one cup and
measuring reflected light pulses from a hand held emitter
and counter, with u, found to vary linearly with U,. The
straight line fitting the data in Figure 3 is given by;

Ldue . 9219 i—(i) (2)
u, dt U, U, eq.
Integrating (2) results in an equation of motion;
‘i;c =—0.219u.U, + 0.057U} + 0.0046 (3)
t

Equating (1) and (2) gives Jtﬁ = (0.714, which compares
with 3.4 for Hyson’s test anemometer which physically
was quite different to our instrument. Using Hyson’s
definitions for T and distance constant, D, gave, for our
instrument, T = 4.56/U,, seconds and D = 4.56m which
correlated reasonably well with wvalues found in
experiment and defined more conventionally. By
comparison, Hyson’s anemometer gave T = 1.42/U,
seconds and D = 1.42m and hence our instrument
responded considerably more slowly.

Equation (3) was integrated numerically to calculate
anemometer responses to sinusoidal wind speed

fluctuations expressed as U,(t)= U, + AUsin(t) for a

range of mean wind speeds U, , ®, and AU,. Integration

was performed using a fourth order Runge-Kutta scheme,
and responses expressed as the percentage deviation from
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FIGURE 3. Anemometer acceleration results. Points are
from experiment, line is equation (1) with ,/aﬁ =0.714.



U, of the anemometer over a number of cycles; this of

course is simply the overrun and results are shown in
Figure 4. For all combinations the overrun was positive,
indicating that the anemometer speeds up faster than it
slows down; a direct result of the non-linearity in
Equation (3).

The absolute values of overrun are similar to those of
Hyson, but exhibit maximum values at much lower ,
presumably due to the slower response. Using atmospheric
hot-wire tests Hyson estimated the overrun of his
instrument at about 1%. No similar tests were performed
on our anemometer. However, as responses to discreet
frequencies were somewhat worse than his, a higher error
was expected.

DYNAMIC CORRECTIONS

As the vane’s frequency response was found to be orders
of magnitude faster than that exhibited by the turbine in
yaw, no corrections were applied to Oy except to remove
higher frequencies to which the vane could not respond
adequately. To prevent phase shift associated with filtering
a simple smoothing function was used for this, which was
designed to approximate the filtering affects of a
Butterworth second order filter.

The anemometer T was, however, of order of the
turbines, and therefore fluctuations to which the turbine
could respond were not adequately known. As the
instantaneous performance of the turbine was under
examination, more sophisticated corrections were
necessary, and these were applied using a state space
control system approach as described by Dorf (1986).
Initially, a linear transfer function model, G,,, was sought
with response characteristics similar to those found in the
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Figure 4. Percentage overrun for varying o, U, ,and AU,

from integration of Equation (3). For E,; 5m/s( )
7.5mig( ———— 7J; 10m/fs ( ==+== ). Values of AU, are
defined in the figure.
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dynamic tests. For simplicity, G, was determined directly
from observed data rather than linearisation of Equation
(3). Inversion of G, then would produce an estimator
which, given the anemometer output, could estimate the
actual instantaneous input U_.

Experimental responses suggested a model of

form G, (s) = (Xs+1)/((Ys+1)(Zs+1)), where s is the

Laplace variable, and X, Y and Z are pole and zero time
constants. To compensate for anemometer non-linearities,
two transfer function models were used, one modelling the
response to step increases in U,, and one to decreases.
Discrete time versions of these are shown in Figure 5
together with actual anemometer output, U,, and the
response as predicted by Equation (3); in this figure U, is
non-dimensionalised with the final tunnel speed U, The
predicted response from both Equation (1) and discrete
time versions of G,,(s) are reasonable in the figure, though
the slight initial delay in anemometer and discrete
versions, a result of the time constant of the tunnel, were
not predicted by the equation. Note also the wavering
anemometer response, which was believed to be caused by
a slight imbalance in the cups.

As the model transfer functions were strictly proper, that
is, as they had more poles than zeros like most physical
systems, the exact inversions were non-causal and highly
noise sensitive. As an alternative, a band limited inversion,

Ge(s)=(Ys+ 1)((25 +1)/(Zs+1)(Bys +1)(Bas + 1)) , was

used; B, and B, are tuning coefficients which determine
the compromise between estimator response time and
noise amplification, and can effectively be used to filter
out higher frequencies.

A state space representation of both estimators, or set of
coupled linear differential equations describing the state of
the system in the time domain, was found through a state
space conversion. As there is only one input, the measured
wind speed U_,,, and one output, the approximated actual
wind speed U_, and as both estimators are third order, the
system state differential equations and output equations
can be expressed respectively as;

%x:Ax-i-BUm,,ﬂ(r) (4a)

and,
UJ(t)=Cx (5a)

25
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FIGURE 5. Actual and predicted anemometer response to
step increase (bottom data) and step decrease (top data).
Lines are; U, ( ); discrete version of G, (- ¥
Equation (3) (-~ ).
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Xj

where x = [ i] X; and x, are state variables, and A, B

*£3
and C are matrices dependent on G.(s) which were
conveniently found using the transfer function to state
space conversion provided by Matlab software.

For a small sampling interval At, (4a) and (5a) can be
rewritten as,

*
X, 4 =% +A(Ax,+BU,, (1)) ; x,= (4b)

=10

and
U.t)=Cx, (5b)

The sequential nature of (4b) and (5b) make them very
suitable to digital processing, and these were used for all
dynamic corrections. An application to field data is shown
in Figure 6 for an arbitrary 100s sample, with the step
decrease based estimator showing the largest corrections
due to the longer T when decelerating. As a discontinuity
in phase and gain between the two estimators prevented
them from simply being used for times of acceleration and
deceleration, an average of the two was thought
reasonable and used for turbine evaluations; the average is
also shown in the Figure. Generally corrections are small,
and in all turbine field data, maximum corrections were
typically of order of 10% in magnitude and less than 1
second in phase shift; these made only slight differences to
turbine quantities being investigated. In specific cases
however, for example where maximum gust is an issue,
corrections may be of great importance and therefore more
applicable.

The effects of smoothing for wind vane data for the
same period are also shown in Figure 6, with the filtering
effects clearly evident. Though a state space method was
not used for our wind vane, there is no reason why one
could not be applied using the same techniques as for the
anemometer.

CONCLUSIONS

A reasonably simple method to predict the actual wind
speed and direction through measurements made by a cup
anemometer and wind vane exhibiting non-zero time
constants has been presented. Corrections made to field
data taken by the authors for wind turbine research were
however generally small, though in specific cases they
may be of more importance.

It should also be noted that errors associated with the
finite distance between measuring point and the point of
interest were not included in the preceeding analysis. For
our wind turbine research a spatial correction of this sort
was also applied, and is detailed in Ebert (1995).
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Figure 3. Corrections to field measured meteorological data. Top data is wind speed (U ), bottom data is wind

direction, (6,,). For wind speed; actual anemometer data (

); estimator based on step increase (—-=------ %

estimator based on step decrease (—--—---- ); average of estimators (-—————--- ). For wind direction; actual

wind vane data (

); wind vane data smoothed ( ==~



