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ABSTRACT

In the present work the multigrid strategy is applied to sec-
ond order ENO schemes to speed up the solution of steady
compressible flows. The performances of the algorithm are
analysed in several flow situations, ranging from low sub-
sonic regime to high supersonic flow, for both internal and
external problems. Computational efficiency and solution
accuracy are checked with two different Riemann solvers.

INTRODUCTION

Essentially Non Oscillatory (ENO) schemes (Harten et
al., 1987) have become very popular in numerical simula-
tion of inviscid compressible flows during the last decade
because of their strong theoretical background, their capa-
bility of dealing with complex flows with discontinuities,
and their “robustness” without the addition of nonphysical
extra terms (artificial dissipation).

All these positive aspects make these algorithms ex-
tremely attractive for numerical simulation in unsteady gas-
dynamics. Conversely, the CPU time requirements is the
main shortcoming for steady flow computations. From this
point of view, methods based on central differences with
artificial dissipation are to be preferred. In fact, besides the
low CPU cost per iteration, the use of multigrid algorithms
to improve the convergence rate of these schemes is well
established. The most popular algorithm of this kind is the
Jameson’s scheme (Jameson, 1983), based on Runge-Kutta
pseudo-time integration, which is, at present, the fastest
algorithm in steady compressible flow simulation. More
recently, the multigrid algorithm has been applied also to
upwind schemes by Dick (1990), who applied the multigrid
algorithm to flux-difference splitting methods.

On the ground of the remarkable improvement in per-
formances of centered and upwind schemes with multigrid
algorithms, we checked how the multigrid strategy performs
when applied to second order ENO schemes. To this end,
we studied a Full Approximation Scheme (FAS) with the V
cycle.

In the sequel of the paper, we report some numerical tests
performed to check the multigrid properties in conjunction
with ENO schemes. For the sake of conciseness, neither
the numerical scheme nor the multigrid algorithm will be
described in details. The reader is referred to (Harten et
al., 1987) for a complete analysis of ENO scheme and to
(Brandt, 1984) for a detailed discussion on multigrid strate-
gies.

The analysis was limited to second order ENO schemes
for two dimensional problems in curvilinear coordinates.
The performances of the multigrid algorithm were tested
with two Riemann solver, i.e. the exact Riemann solver
developed by Gottlieb and Groth (1988), that requires the
iterative solution of a nonlinear system at each cell interface,
and the solver developed by Harten et al. (1983), that gives
an approximate solution in closed form.

NUMERICAL TESTS

The performances of the multigrid algorithm have been
tested for various flow regimes, in the whole range from low
subsonic to high supersonic Mach number, for both internal
and external flows. In all the numerical tests, the initial
condition is a uniform flow and convergence is assumed to
be obtained when the L, norm of the mass convervation
residual is reduced by six order of magnitude.

The global efficiency of a multigrid algorithm w1l be
measured in term of the Work Reduction Factor (wrfin the
following), defined as the ratio of the work needed to reach
the steady state in a standard single grid calculation to the
work required by a multigrid calculation, where the work
unit is defined as the cost of one iteration on the finest grid.

In the test cases reported, the number of levels and
the number of iterations at each level will be indicated as
Viitval...juy - that means that NV levels were used, the num-
ber of iteration was vy on the first (the finest) grid, 1> on the
second, . . ., ¥n on the last (the coarsest). For each test case,
only the best V cycles will be reported. It is to be noticed
that in no cases the V cycle includes smoothing iterations in
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the ascending phase, i.e. when interpolating the correction
from a coarse grid to a finer one. Numerical experience
showed that this is the best choice from the point of view of
global efficiency.

Finally, the aforementioned Riemann solvers will be re-
ferred to as the “exact” solver (Gottlieb, 1988), and the
“HLL” solver (Harten et al., 1983).

Internal Flows

Subsonic flow in a channel. The first test was a subsonic
flow in a channel with a circular arc bump on the lower wall.
The width of the channel is equal to the length of the bump,
and the thickness-to-chord ratio of the bump is 10%. The
inflow Mach number is 0.5.
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Figure 1: Subsonic flow in a channel. Mach number distribu-
tion on upper and lower walls (top half) and pressure contours
(bottom half). Exact solver, grid 192 x 64, Ms = .5

Grid 192 x 64
Solver | Cycle Work wrf
Exact | SG 76459.00 =
Exact V5/15/25/50 2124.13 36.00
HLL | SG 77335.00 —
HLL | Vs/15/25/100 633.19 | 122.14
Grid 96 x 32
Solver | Cycle Work wrf
Exact | SG 25672.00 -
Exact | Vs/15/25 1098.70 | 23.36
HLL | SG 24733.00 —
HLL | V579550 527.48 | 46.89

Table I: Efficiency of the multigrid calculation for the subsonic
flow in a channel

Figure 1 shows the pressure contours and the Mach num-
ber distribution on the lower and upper walls for the con-
verged solution . The same flow was also computed with a
96 x 32 grid and both the computation were repeated with
the HLL solver. In table I the work required by the com-
putations is reported. As it can be inferred from the table,
the efficiency considerably grows with the grid size when
using the HLL solver, while the increase is less significant
with the exact solver. Moreover the performances increase
with the number of the grid levels; the maximum was found
with the four level computation, in which case a very high

work reduction factor is gained (~ 122 with the HLL solver
and ~ 36 using the exact solver). We have also checked
the multigrid algorithm with five and six grid levels with the
grid 192 x 64, but it seems that the performances cannotbe
improved.

The better behaviour of the multigrid strategy in con-
junction with the HLL solver is probably to be related to
its dissipative properties, which are greater than that of the
exact solver, as the lower accuracy in the solution reveals.

Transonic flow in a channel. The same channel ge-
ometry was considered for the analysis of a transonic flow
computation with inflow Mach number equal to 0.675. Like
in the subsonic case, two grids and two Riemann solvers

were used to check the performances of the multigrid algo-
rithm.
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Figure 2: Transonic flow in a channel. Mach number distribu-
tion on upper and lower walls (top half) and pressure contours
(bottom half). Exact solver, grid 192 x 64, M, = .675.

Grid 192 x 64
Solver | Cycle Work wrf
Exact | SG 34017.00 —
Exact %/15/25/50 2116.61 16.07
HLL | SG 33800.00 -
HLL | Vs/15/25/50 1272.64 | 26.56
Grid 96 x 32
Solver | Cycle Work wrf
Exact | SG 16310.00 -
Exact V5/25/5g 1958.40 8.66
HLL | SG 15394.00 =
HLL | V571015 1182.98 | 13.01

Table 11: Efficiency of the multigrid calculation for the transonic
flow in a channel. Grid 96 x 32 and 192 x 64

In figure 2 pressure contours and Mach number distribu-
tion on upper and lower walls of the channel are presented.

Multigrid efficiency was tested with the same grids as
in the previous case; table I shows the performances that
have been obtained. It can be noticed that the reduction
factors in the transonic case are smaller than in the subsonic
case. Anyhow, at least 90% of CPU time is saved with both
solvers in all cases. Besides, the improved performances
of the multigrid algorithm when refining the grid and when
using the HLL solver are confirmed, and also in this case



the improvement with the exact solver is much smaller.

Finally, from table I and table II, it can be noted a re-
duction in the number of iterations on the coarse levels in
the best V-cycle. This is a general trend observed when the
Mach number increases.

Supersonic flow in a channel. Figure 3 presents the
supersonic flow in a channel with Mo, = 1.4 at inflow. In
this case the thickness-to-chord ratio is 4%. The outflow
being supersonic, boundary conditions are enforced only at
the inflow section (Moo = 1.4, poo = 1.4, poc = 1).
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Figure 3: Supersonic flow in a channel. Mach number distribu-
tion on upper and lower walls (top half) and pressure contours
(bottom half). Exact solver, grid 192 x 64, Mo = 1.4,

As to multigrid efficiency, work units for both single grid
and multiple grid technique are reported in table ITI. In the
current case, the time reduction factor is much smaller than
in the previous tests. It must be noticed that, differently
from the previous cases, the reduction factor when using the
HLL solver is almost the same as the computation with the
exact solver on the grid 96 x 32, while the HLL calculation
is again more efficient on the finer grid 192 x 64.

Grid 192 x 64
Solver | Cycle Work | wrf
Exact | SG 6856.00 -
Exact V5/10/15/20 2288.25 | 3.00
HLL | SG 6867.00 -
HLL | Vs/10/15/20 | 1273.49 | 5.39
Grid 96 x 32
Solver | Cycle Work | wrf
Exact | SG 3444.00 =
Exact V5/10/15 1216.85 | 2.83
HLL | SG 3378.00 =
HLL | V510715 | 1085.16 | 3.11

Table I11: Efficiency of the multigrid calculation for the super-
sonic flow in a channel. Grid 96 x 32 and 192 x 64

Itis to be noted that the number of iterations on the coarse

meshes is smaller than in the subsonic and the transonic
cases.

External Flows

Transonic flow around a NACA 0012 airfoil. The
transonic flow pasta NACA 0012 airfoil at M., = 0.85 and
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one degree angle of attack (Dervieux et al., 1989)is a severe
test case for inviscid flow solvers because the numerical so-
lution is extremely sensitive to calculation parameters. In the
computation reported, the physical domain was discretized
by means of an O-type mesh whose external boundary is
placed 100 chords far from the airfoil.
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Figure 4: Transonic flow around NACA—0012 airfoil: Mach
number contours. Exact solver, My, = 0.85, o = 1°, O-grid
192 x 64

Solver | Cycle Work wrf
Exact | SG 11378.00 -
Exact V5/15/25/5g 1397.38 8.14
HLL | SG 22239.00 -
HLL V5/15/25/100 1331.95 | 16.70

Table IV: Transonic flow around a NACA-0012 airfoil: multigrid
performances

Figure 4 shows the Mach number contours, obtained with
the exact solver. The computing times for this test case are
shown in table IV. It is interesting to note that, in the single
grid calculation, the HLL solver, which is the cheapest of
the two for the solution of the single Riemann problem,
yields the most expensive global solution. This is due to
the reduced stability limit observed when using the HLL
solver and to the increased number of iteration required to
obtain steady state (compare the work for the two single grid
computation in table IV).

As in the previous cases, the reduction factors obtained
with the HLL solver are greater than those obtained with the
exact solver; however, due to the larger CPU time required
in the standard single grid procedure by the HLL solver,
the differences in the final cost with the two solvers are
practically negligible.

Supersonic flow around a cylinder. Two test-cases
with upstream Mach number Mo, = 4 and Mo = 10 are
presented. The physical domain is discretized with a C type
grid with 192 x 128 cells.

Undisturbed flow is assumed at the parabolic outer bound-
ary, while the variables are extrapolated on the two vertical
lines (supersonic outflow conditions); zero normal flow is
enforced on the solid wall of the cylinder.

Only the HLL solver calculation is reported, because we
met with difficulties when using the exact solver. In fact,
while we always obtained a converged solution with the HLL
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Figure 5: Supersonic flow around a cylinder: Mach number
(right) and entropy (left) contours. HLL solver, M, = 4,
C-grid 192 x 128.

solver, the computations with the other solver often failed to.
reach the steady state, without any sistematic dependence of
convergenceon the grid size and shape, or on the free stream
Mach number. However, such troubles are not surprising
with this type of flow. Quirk (1992), in his *catalogue
of failings”, reports the so—called “carbuncle phenomenon”
as an example of computational failing of Godunov-type
schemes.

Figure 5 shows Mach number and entropy contours in
the case Mo = 4. The flow with Mo, = 10 has the same
structure as in the case M, = 4, except that the bow shock
is closer to the cylinder.

In table V the CPU cost and the work units for the current
test are reported. Like in the test case of the supersonic flow
in the channel, the higher the upstream Mach number, the
lower the multigrid efficiency. We can observe that the loss
of efficency is dramatic: in fact, the work at Mo, = 10 is
three times larger than in the case M, = 4. It must also
be remarked that in the best cycle at Mo, = 10 the number
of iterations decreases from the finest to the coarsest level
(table V), i.e. the structure of the optimum V cycle is reversed
with respect to lower Mach number computations.

Mis =4
Cycle Work wrf
SG 12644.00 —
Vs/15/25 1298.15 | 9.74
V5/10/15/25 999.52 | 12.65
Vs/10/15/25/30 967.40 | 13.07
My =10
Cycle Work | wrf
SG 11524.00 -
Visjio/s 3867.11 | 2.98
Vao0/15/10/5 3255.37 | 3.54
V30/20/15/1[]/5 2527.19 | 4.56

Table V: Supersonic flow around a cylinder. Multigrid effi-
ciency with the HLL solver

CONCLUSIONS

In the present work we have analysed the behaviour of
the multigrid strategy when applied to second order ENO-

type schemes. As expected, the efficiency of the multigrid
algorithm was extremely high when dealing with fully sub-
sonic problems, for which the steady state Euler equations
are elliptic everywhere in the field.

The algorithm works equally well, although with reduced
efficiency, when dealing with transonic flows, i.e. with
mixed type problems. Numerical experiments reveal that a
computation ten time as cheap as the single grid computation
is to be expected in most cases.

The efficiency of the multigrid algorithm decreases fur-
ther when calculating external supersonic flows; however, a
ten times reduction in CPU time is still obtained if the Mach
number is smaller than 3 ~ 4. Conversely, it was found that
the performances are much worse when calculating exter-
nal supersonic flows past blunt bodies with Mach number
greater than 8 ~ 10 or internal supersonic flow past slender
obstacles. In these cases, the reduction factor to be expected
is at most 5. The lowering of multigrid effectiveness is to be
related to the contraction of the subsonic region in external
supersonic flows or to its almost total absence for the case
of internal flows past slender obstacles.

It is interesting to remark that the structure of the “opti-
mal” V cycle regularly changes from the usual cycle with
few iterations on the fine grid and many more smoothing
steps on the coarse levels in subsonic flow regimes, to a
structure which is completely reversed in high supersonic
flows.

Regarding the performances of the multigrid algorithm
with different Riemann solvers, the best efficiency was al-
ways obtained with the HLL solver, which is also the less
expensive for the solution of the single Riemann problem.
However, this favourable aspect is often counterbalanced by
a reduced accuracy in the numerical solution.
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