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ABSTRACT

In the literature, we can find the numerical solution of the flow around a flat disk rotating around its own
revolution axis when the fluid at infinity is at rest. The velocity is expressed by a set of three unknown
functions of a dimensionless variable . The problem is to obtain a solution for a set of three non-linear
differential equations with five boundary conditions. The first solution is given by Cochran [1]. It is obtained in
the form of a power series near the disk, an asymptotic series for large values of T and a link between these two
solutions. The second solution is given by Sparrow et @ [5] using some specific routines implemented on an
IBM computer.

This paper presents different numerical solutions in the case of the adjunction of a uniform blowing (positive
or negative value) through the porous disk. To compute the three components of velocity, we use Radbill’s
quasilinearization method [3].

With an adequate set of boundary conditions, "quasilinearization‘ converge, in all times, to an acceptable
physical solution for the velocity and the temperature

EQUATIONS OF MOTION

Like von Karman [2], we stipulate that the components of velocity and pressure are expressed with the next
functions depending on a dimensionless variable .
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Inserting these functions in the Navier-Stokes equations, we find a system of three simultaneous equations
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The equation for pressure and temperature (Pr # 0.71 (cf [4])) may be integrated as soon as the velocity is
known. The results shoud be at the measure of accuracy of the velocity.

T = Pr .W.T, 3)

P-RK = -i.(4U+W2) @

QUASILINEARIZATION
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We consider the vector @ = [W U, U ,VvV.,V ] and two succesive solutions fb(k) and @K1 . To
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compute a solution, we first ransform the non-linear equations ® = F {®) equivalent to (2) for the flow
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field into a linear system of five ordinary equations using a development analogous to Newton-Raphson’s
method, limited to the first order, around an estimated previous solution. This development is :

k+1 5
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which gives a linear matrix system.
(k+1)
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We can use [3] the standard methods for linear differential equations and look for a set of a particular solution
@, and two independent solutions @, for the homogeneous part of (6).

The new estimated solution is given by the the linear combination (7) where the two parameters A j are fitted
to verify the boundary conditions at infinity.
glhtl) _ Pp + A Pp; + A2.Pp2 (N

Equation (4) is linear and homogeneous. Its solution is obtained with the knowledge of W. A solution only
needs to look for two independent solutions.

PHYSICAL CONDITIONS
For the linear system (6), we know the conditions of no-slip on the disk, and the intensity (vs) of the positive
blowing or negative suction through it

t
®(0) = [0, 1,U(0), vs,V (0)] ®
and, at a large distance from the disk, we may stipulate that the fluid is at rest or irrotational.
k] $] r
D(sw) = P = [wm,um.u Vo ¥ } ©)
(2] oo
fluid at rest : Us = 0 § Va = 0 (10)
irrotational motion : U =0 § ¥ = 0 « ¥V = 0 (11)
fe 2] @
For the dimensionless temperature, the boundary conditionsare: T(0) = 1 ; Tw = 0 (12)

RESULTS AND DISCUSSION

COCHRAN’s SOLUTION

A fourth order scheme as Runge-Kutta needs the two initial slopes for U and V. A multiple shooting method to
fit two various conditions at infinity is tedious and expensive as compared to a linear combination (7). For vs =
0, our characteristics are represented on table 1 (step size 7 =0.01 , n, = 16).

Using this solution as first initialisation, we can compare theaccuracy of our numerical results.

TABLE 1
COMPARISON BETWEEN OUR NUMERICAL RESULTS AND RESULTS OF [2] AND [4]

vs=0 2] [4]

U,(O) 0.51022 0.510 0.510
V) -0.61594 -0.6159 -0.616
W, -0.88445 -0.8845 -0.886

P, -0.39113  (equ. (4)) +0.393
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These results for these derivatives are summarized in figures 1 and 2. For the blowing, it is necessary to
increase the value of T, For a suction, we see the diminution of the boundary layer and we must shorten the

step size. The greatest value of U (0) is mear T = 0.25 (vs=0.). For the greatest values of suction, the fluid is
nearly rotating around the vertical axis r = 0 because the inclination of the streamlines decrease towards 0 . It is
possible to improve our results using Richardson’s comrection which provides a better accuracy using two results
obtained with two different step sizes.

Figure 1 is of great interest to minimize number of iterations. On figure 2, with vs becoming increasingly
negative, the inflow goes directly into the porous surface,
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SECOND SOLUTION

We pretend not to know Cochran’s solution and start the computation with these values :U’(O) = 0.508 and

V’'(0) = - 0.604 to compute the characteristics of the flow field with a constant blowing (vs > 0) or suction (vs <
0). These initial conditions with conditions (10) can give a second numerical solution for the matrix system (6).
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To obtain this new solution or the precedent depends on the three following criteria :(a) the initial guess
solution ; (b) a set of two final conditions at infinity ; (c) the value of infinity: T,
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Cochran’s solution is characterized in the fact that the components U and V and their derivatives must be
asymptotically equal to O at infinity. But, at the upmost, we can specify two conditions for our scheme (cf (8)).
Then, the conditions (a) are of primary importance and we may use the results of figure (1) to minimize the
number of iterations and obtain Cochran’s solution.

Figure 5 and 6 represents three numerical solutions (C, = 16.0 ; vs = -1.5 ; step size 0.01).We can see that the

profiles of V and T are close together. To appreciate the influence of the boundary conditions we give thereafter
some numerical results with used boundary conditions. These numerical properties are given in table 2.
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TABLE 2

SOME IMPORTANT PROPERTIES OF THE SOLUTIONS

7 L]

L] L]
COND. =0 L Vo Uy U T Ve W, T
UiV 0.2121 1.4721 <1.E-12 7.782E-3 <1.E-12 4.01E-4 7.20E-3 -1.0260
UV, 0.3068 1.5799 -2.99E-6 <1.E-12 -2.47E-6 <1.E-12 -1.6194 -1.1019
UV o 0.2167 1.4642 <1.E-12 7.86E-3 -1.72E-3 <1.E-12 7.83E-3 -1.0282

CONCLUSION

Radbill’s scheme is very adequate to solve a system of linear or non-linear differential equations with boundary
conditions. This method is still useful for the dual problem of a disk at rest in a uniform rotating swirling flow
(cf [4], chap XI). This scheme is more stable in the second case (11). A coarse estimate with (2) at infinity

shows that if asymptotically v’ o= 0 then the others conditions at infinity are verified. We have obtained a second
numerical solution.and a shooting method can oscillate between these solutions.
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