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ABSTRACT

All possible incompressible three-dimensional flow
patterns can be classified using the second invariant )
and third invariant R of the velocity gradient tensor.
Characteristic features of the flow field are revealed in
scatter plots of Q versus R using data from full Direct
Numerical Simulations (DNS) of turbulence. In this
paper it is shown that other significant features of the
data, such as the alignment of the vorticity vector
with the rate of strain tensor, can also be revealed by
suitable normalisation of () and R.

INTRODUCTION

There are many papers (see for example Jimenez
et al. 1993 and Moffatt ef al 1994) on the structure
of vortical motions using data from numerical compu-
tations of turbulence. These vortical structures (re-
ferred to as wormns or sinews are usually associated
with regions of high enstropy. Studies have also been
made of the spatial distribution of regions of high dis-
sipation which do not generally overlap with regions
of large enstropy. Attempts have also been made to
relate these vortices to typical strained generic vor-
tices, such as the Burgers-type vortex or Ludgren-
type vortex. Numerical computations of turbulent
flow fields produce vast amount of data. A consis-
tent and efficient method of studying vortical struc-
tures and high energy dissipating regions found in
these simulations is to classify every point in a three-

dimensional flow field using the invariants of the ve-
locity gradient tensor (see Chong et al., 1990). This
technique provides an unambiguous method of de-
scribing the local topology, i.e. all possible three-
dimensional flow patterns, in a flow field. Since re-
gions of high enstropy are regions with focal local
topology and regions of high dissipation are related
to regions with unstable node/saddle/saddle local
topology (see figure 1 for a description of these flow
pattern topologies), a method of studying the charac-
teristics of these structures is to map the local topol-
ogy of every point in the flow field using the three
invariants of the velocity gradient temsor Aj;. This
technique is described briefly in the next section (for a
detailed description see Chong et al. 1990 and Soria
et al. 1993).

LOCAL TOPOLOGY AND CLASSIFICATION OF
FLOW PATTERNS

For an observer moving in a non-rotating frame of
reference with any particle in a flow field, the flow
surrounding the particle can be described in terms
of the nine components of the velocity gradient ten-
sor A;j, i.e. the velocity u; = Ajjz;. Hence this
topological description is independent of the veloc-
ity of the observer. The velocity gradient tensor
may be broken up into a symmetric and an anti-
symmetric part, i.e. Ay = Ou;/0z; = Si; + Wi;,
where S;; = (Oui/0z; + Ou;/0z;)/2 and Wy; =
(Oui/0zj — Ouj/Ox;)[2 are the rate-of-strain ten-
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sor and the rate-of-rotation tensor respectively. The
three invariants of A;; are

P = —Ag (1)
1
= E[PZ—S,-ij,-—W.-jo,-] (2)
1
B = —(—P3+3PQ—SiijkSk,'

3
—3Wi; W;kSki). (3)

For incompressible flow the first invariant P is zero
and the second invariant () and the third invariants
R form a space which is divided into various topo-
logical classifications (see Chong et al. 1990). The
curve (which forms a cusp at the origin) dividing so-
lutions with complex eigenvalues from that with real
eigenvalues is given by

TR +@=0 (4)

The above curve and the possible non-degenerate flow
patterns in the () — R space are illustrated in figure 1.
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Figure 1: Three dimensional topologies in the @ — R
(P = 0) plane (after Soria et al., 1994)

SF/S: stable focus/streiching,

UF/C: unstable focus/contracting,
SN/S/S : stable node/saddle/saddle, and
USN/S/S : unstable node/saddle/saddle.

Similar expressions can also be obtained for the
second and third invariants of the rate of strain tensor
(s and R, respectively) and the rate of rotation
tensor (@, and R, respectively). It can be shown
that —(), is proportional to dissipation and @, is
proportional to enstropy density.

SCATTER PLOTS OF Quvs R

At a given time step in a numerical computation
the second invariant can be plotted versus the third
invariant to produce scatter plots. Such scatter plots
have revealed significant characteristic feature of ‘a
flow field (see Chen et el. 1990, Soria et al. 1993
and Boratav ef al. 1995). A example of a scat-
ter plot for a wake flow (~ 5 x 10° data points)
is shown in figure 2 (see also Soria & Chong 1993).
The scatter plot shows that the bulk of the data lies
close to the origin while motions with high gradients
lie in the lower right hand quadrant (with unstable-
node/saddle/saddle topology) or in the upper left
hand quadrant (with stable-focus/stretching topol-
ogy).

Figure 2: Scatter plot of () vs R for a wake calculation
(see Soria & Chong, 1993)

Other features of a flow field which are important

are

e the ratios of the eigenvalues (principal strains)
of the rate of strain tensor, and

e the alignment of vorticity vector with the three
principal strain directions

(see for example Ashurst et al. 1987, Chen el al
1990, Sondergaard et al. 1991, Soria el al. 1992
and Lund et al. 1994). These studies have shown
that the vorticity vector is primarily aligned along
the eigenvector of the rate of strain tensor which cor-
responds to the intermediate eigenvalue and that the
most probable ratio of the eigenvalues is -3:1:2. This
conclusion is generally thought to be contrary to com-
mon belief that the vorticity would tend to align with
the direction where it is highly stretched, i.e. with
the eigenvector corresponding to the highest eigen-
value. However, Majda (1991), Cantwell (1992) and



Boratav ef. al, using the modified Euler equations
(also known as the simplified/restricied Enler equa-
tions), have shown that there is indeed a tendency for
the vorticity to align in the direction of the eigenvec-
tor associated with the intermediate eigenvalue. Scat-
ter plots of these analyses have also the same charac-
teristic features as data from DNS of turbulent flow
fields.

It would of useful if plots of the second and third
invariant of the velocity gradient temsor could also
display information regarding the ratio of the eigen-
values of the rate of strain tensor and the alignment
of vorticity with the principal strain directions. The
eigenvalues (a;) (with corresponding eigenvector ;)
of the rate of strain tensor can be arranged such that
a; < ay < az. For an incompressible fluid, @ is
always negative, a3 is always positive and oy can be
either positive or negative. For a coordinate system
aligned with the principal strain directions, it can be
shown that the second and third invariants of the ve-
locity gradient tensor are given by

1 1 1
Q = —03 —ad — azas — 3] — 2wd - 2u) (5)

and
1

2 2 2 2
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(6)
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where w; are the vorticity components.

Since the local topology at any point in the flow
field is governed by the strength of the vorticity field
(enstropy) relative to the strength of the strain field,
normalised forms of the second invariant () and third
invariant R are Q* = Q/la,-lz and R* = R/|a;|3
respectively, where «; is one of the eigenvalues of the
rate of strain tensor (i.e. one of the principal rates of
strain).

It can be shown from equations 5 and 6 that

e if the second and third invariant are normalised
with the intermediate principal rate of strain, i.e.
&3]

e then data points where the vorticity vector is
aligned in the direction of the eigenvector cor-
responding to the intermediate principal rate of
strain, will collapse on to a line defined by

g = R =1 (7)
when w3 is positive, or to a line defined by
Q+R =-1 (8)

when as is negative.

NORMALISED SCATTER PLOTS AND FLOW
PATTERN TOPOLOGY )

Equations 7 and 8 provides a graphical method
of “displaying” the alignment of the vorticity vector
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with the principal strain direction. For the same data
as shown in figure 1, plots of the probability of |cos(w,
;)| have shown that the vorticity vector is primarily
aligned with es, i.e. the eigenvector corresponding
with the intermediate eigenvalue. Hence the plot of
(Q* versus R* for this data would be such that most of
the points would lie along the line given by equations
7 and 8. Figure 2 shows the same data given in fig-
ure 1 re-plotted with the second and third invariants,
() and R respectively, normalised with ap. The plot
shows distinctly a collapse of the data on lines given
by equations 7 and 8 indicating that in the flow field
there is indeed a tendency of the vorticity to align
in the direction of the intermediate principal rate of
strain. Other normalised scatter plots, e.g. for the
mixing layer data (Soria ef. al, 1994), also display
the same feature.

Qr=Q/y

R*=R/agl®

Figure 3: Scatter plot of Q™ vs R for same wake data
shown in figure 2. Darker points are for «o positive and
lighter points are for oy negative.

Apart form showing the alignment of the vortic-
ity vector with the principal strain directions, the
scatter plot also shows the local topology. Unfor-
tunately, although the invariants () and R (and so
will (% and R#) determine the local topology, the
flow pattern is not unique and three-dimensional flow
patterns are complicated, even for the simple case
where the vorticity vector is aligned with one of the
principal strain directions. Figure 4 shows the chang-
ing local topology for the case where the vorticity
vector is aligned with the intermediate strain direc-
tion. The flow pattern for the strain field where
the ratio of the eigenvalues is -3:1:2 is shown in fig-
ure 4(b). There are three orthogonal eigenvector
planes which contain solution trajectories and the
topologies in the eigenvector planes are unsiable-
node/saddle/saddle. Figure 4(a) shows the location
" and R* as the vorticity is increased in the inter-
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mediate strain direction. With vorticity, the eigen-
vectors e; and es are no longer orthogonal and the
topologies in the eigenvector planes changes to (c)
unstable-star-node/saddle/saddle and then to pla-
nar flow as shown in (d). The topology in the e;-e3
plane which was initially a saddle (as shown in (b))
then changes into a stable-node and then becomes
a logarithmic node as shown in (e) and finally to a
focus as shown in (f).

Q*

(a)

i @ R*
()
®

Figure 4: Local topology for a given strain field when
the vorticity is increased in the direction of the eigen-
vector corresponding to the intermediate principal strain
direction. The principal strain field is -3:1:2. (a) shows
Q* and R* for the different flow patterns. (b)-(f) how
the local flow pattern for increasing vorticity, where (b)
corresponds to the case when the vorticity is zero.

CONCLUSION

This paper describes a method of normalising the
second and third invariants of the velocity gradient
tensor which collapses the data from a flow field on
to lines given by Q* = R* = —1 for points in a flow
field where the vorticity vector is aligned with the
eigenvector corresponding to the intermediate prin-
cipal rate of strain. Although the topological clas-

sification is relatively easy to determine, the three-
dimensional flow pattern is extremely complicated.
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