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ABSTRACT

One of the difficulties in numerical modelling two phase
flow is the tracking of the interface between the phases.
This is also true for large gas bubbles moving under the
action of gravity in a liquid filled enclosure. Numerical
models for two and three-dimensional bubble motion are
presented using a modified VOF method which takes into
account the effects of surface tension. Examples are
presented 1o illusirate the effects of density, viscosily and
surface tension variations on bubble motion in an
axisymmeltric situation. An example of three-dimensional
solution is also presented.

INTRODUCTION

Recent progress in the understanding of complex single-
phase flows can be attributed to the development of fluid
visualisation techniques, detailed velocity measurements
and the incrcasing power of numerical simulation.
However, difficulties are still encountered,
experimentally and numerically, in flows which consist of
two or more phases. In numerical work the difficulties are
associated with accurately determining the motion of the
interface delineating a gas bubble in a liquid. The main
problem is the numerical diffusion of the advancing
interface which destroys the sharpness of the front. A few
higher order numerical schemes can reduced this artificial
diffusion but may cause oscillations (Unverdi and
Tryggvason 1992).

In order to fully understand the behaviour of a multi-
fluid system, a good insight is required into the basic
micromechanisms of a single structure. Volume tracking
methods can simply and accurately account for the
interaction of many different smoothly varying interfaccs.
The VOF method, introduced by Hirt and Nichols (1981),
is a variation of the MAC method. Here, the massless
particles used in the MAC mecthod are replaced by a
function, F, which represents the fractional volume of a
cell occupied by the liquid phase. F is convected by the

velocity field so that an equation can be written for its
transport. The orientation and location of the interface is
then determined by the value of F in the interface cells -
that is in the region where F changes from zero to one.

MATHEMATICAL FORMULATION

Here, the motion of a gas bubble in an otherwise
stationary liquid is studied using a modified VOF method
which incorporates surface tension stresses. Since the
pressure changes are very small, the equations of motion
for both fluids are given by the incompressible Navier-
Stokes and continuity equations which in conservative
form are
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in which, U(x,0)=(u ,u,u) is the fluid velocity,
x(r,0,z) is the posilion, p is the density, [ is the dynamic
viscosity, p is the pressure, g is the gravitational
acceleration vector and Fg, is the volume form of the
surface tension force and which appears only at the
interface. The right hand side of equation (2) is equal o
zero if both liquid and gas densities are constant. It
should be noted that both p and W have different values
for the liquid and gas phases and at the interface. This
discontinuity can be used to represent the interface.
However, the ratio of the densily and dynamic viscosity
for waler and air is of the order of 850 and this sharp
discontinuity makes numerical simulation very difficult.
Insicad of solving equation (2) directly, the function F,
which lics between 0 and 1, and as mentioned above is
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used as a indicator of the interface, is evaluated following
Hirt and Nichols (1981) from,

-Q-F—+V-(UF):O (3)
ot

At the interface, the density and viscosity to be used in
equations (1 and 2) can be expressed as

px,0)=F(x,0)p, +[1-F(x,0)lp, 4)
ROGE) = FOGOR, + 1= F(x, Dk, (6)]

Following Brackbill et al (1992), Fg,, can be written as
F, (x,0)=ok(x,t)n (6)

where o is the coefficient of surface tension and x is the
curvature of the interface. k may be calculated from:

K(x,:):i[(i-vjxq—(von)] (7)

[n] " [n]

n=VF (8)

in which,

The computational domain has been divided into a
number of non overlapping control volumes so that one
control volume surrounds each grid point and all
variables are defined at the centre of the control volume.
The differential equations are integrated over each control
volume. In the fully implicit scheme, a forward step in
time is used, so that the equation is written for any

variable ¢ as

¢m‘l - ¢." e+l
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in which the superscript n indicates the nth time step and
s is the source term. The discretized equations obtained
in such a manner more accurately represent the
conservation of mass and momentum than the more
familiar finite difference approximations and have
therefore been used here. For a finite control volume
centred at the point Pf(i,j,k) equations (9) can be written
as

Apdp = ZANP¢NP + 5 (10)

in which A is the coefficient which results from the
discretization and the subscripts P and N denote the
centre point of a control volume and the neighbouring
volumes surrounding P respectively.

Since oscillations in pressure and velocity fields may
result when a non-staggered grid is used, the Rhie and
Chow (1982) interpolation has been employed. For
example the solution of equation (10) with ¢ =u,
becomes,
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in which B is the coefficient of the pressure gradient
term. The velocity on the right face of a control volume
centred on P(i,j k) is given by

(i i) Bijy + By i)
Uy iin= dujk . Lik? | jk . 1,j.k sz.i.j.t (12)
The pressure-velocity coupling is based on the SIMPLE
algorithm introduced by Patankar (1983). If the velocity
and pressure are defined as

U=U"+U’'=U" +BVp’
. (13)

p=p +p
in which, p’ and U' are the pressure and velocity
corrections respectively, p* is the value of the pressure at
the previous step and U* is the solution obtained from
equation (10). The pressure correction is obtained by
substituting equation (13) into equation (2), yielding in
general

Ve(BVp)=VaU" (14)

At each time step, values of p obtained from equations
(14) and (13) are used in equation (11) and new values of
U* obtained. The pressure is updated by solving equation
(14). The iterations are continued until VeU*=0. Once
this has been achieved, equation (11) is progressed to the
next time step. Equation (4) is solved by a modified
DONOR-ACCEPTOR cell algorithm. A correction is
performed on the basis of the residual resulting from the
continuity equation.

We now require suitable boundary conditions. In the
cases discussed in this paper the initially spherical gas
bubble is located on the axis of a vertical closed cylinder
otherwise filled with a stationary liquid. The boundary
conditions on the walls are U= Vp’=0. The bubble is
initially at rest and is a perfect sphere.

The axisymmetric solutions have been obtained on a
two-dimensional (r,z) grid with all 6 derivatives set to
zero. Although not discussed here a mesh refinement
study indicated that a 34x80 mesh leads to sufficiently
accurate solutions for the axisymmetric case, so that this
mesh has been used in this study. A 12x8x40 mesh was
used in the three dimensional case.

RESULTS AND DISCUSSION

In non-dimensional form, the bubble deformation and its
motion can be characterised by the Morton number
M =g} /p,c’, the Bond number Bo=p gd} /G , the
density ralio pg/p,, viscosity ratio Hg/jl, and the initial
cylinder to bubble radius ratio (RJ/Rp). We have
performed a parametric study of an asymmetric bubble
with 5x100< M <50, 42 < Bo <e, 10< pylp, <1000,
40<pp/He<100 and 1.5<R /R, <2.5. Due to the restriction
on the length of this paper, only a very small sample of
results is presented here.

The results for M=7.4x1072, Bo=420, pf/pgzl()OO
and pf/pg:SO and R./R,=2.0 are shown in Figure 1. As
the bubble begins to rise due to buoyancy (Figure 1(a)), a
jet forms at the bottom of the bubble and pushes the
lower surface upwards (Figure 1(b)). The velocity of the
upper surface of the bubble decreases with increasing
lime, so that the bubble becomes a shell (Figures 1(c)).
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FIGURE 1 BUBBLE MOTION IN A CYLINDER
(M=7.4X10"2 Bo=420, p, /p, =1000, 1/, =80

Ro/Rp=2.0)

As time progresses the lower surface approaches the top
surface and eventually pierces it, thus forming a toroid
(Figure 1(d)). At a later time still, the toroid expands as
may be seen by comparing Figures 1 (e) and (f). Walters
and Davidson (1963) experimentally observed similar
phenomena.
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FIGURE 2 A BUBBLE MOTION IN A CYLINDER
(M=7.8x10"> Bo=50, p, /p, =100, /1= 80

R¢/Rp=2.0)
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FIGURE 3 A BUBBLE MOTION IN A CYLINDER
(M=1.25x10"2 Bo=5, p, /p, =40,1, /1, =40

Re/Rp=2.0)

If the values of Bo, the density ratio and M are changed 1o
50, 100 and 7.8x10° respectively, the flows show in
Figure 2 result. It may be seen that a decrease in Bond
number and density ratio leads to a slightly different
sequence of shapes to those shown in Figure 1 and the
diameter of the toroid decreases due to the smaller
density ratio and higher surface tension. A lower viscosity
does not significantly affect the initial shape of the
bubble, but a shorter toroid finally evolves (see Figure 2).

In Figure 3 it can seen that an increase in the coefficient
of surface tension together with a further reduction in the
density and viscosity ratios leads to an inverted cup
shape. Although initially a weak water jet is formed
(Figures 3(b) and (c)) it does not pierce the bubble.

An example of a three-dimensional solution is presented
in Figure 4. The shape development is the similar to that
in Figures 1 and 2. It should be noted that the views in
Figure 4 have been chosen so as to yield a good
understanding of the shape development of the bubble.

The bubble position history is shown in Figure 5. It can
be seen that the velocity changes depending on the
parameters used. When Bo 2 50, the bubble breaks into
a toroid. Under those circumstance, a higher density ratio
leads to a more quickly rising bubble. A bigger surface
tension force , ie. small value of Bo, causes a slow bubble
translation. A high surface tension leads to an inverted
cup bubble, which travels faster than a toroid even for a
low density ratios.

The current method has been extended to include mass
and heat transfer and their effects are now being studied.
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FIGURE 4 A BUBBLE MOTION IN THREE DIMENSIONAL
(M=5.0X10"6, Bo=420, p, /p, =80 .1, /p, =80, R/Rp=2.0)
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FIGURE 5 THE EFFECT OF VISCOSITY AND SURFACE TENSION ON BUBBLE MOTION
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