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ABSTRACT

A numerical method for the simulation of a spa-
tially evolving boundary layer is presented. The gov-
erning equations are cast in velocity-vorticity form
to avoid complications associated with calculating
the pressure. The numerical method uses a mixed
spectral/compact difference scheme for evaluating the
spatial derivatives. Compact differences are used in
the streamwise direction to capture the spatial evo-
lution of the flow. Jacobi and Fourier spectral meth-
ods are used in the wall-normal and spanwise di-
rections respectively. At the outflow boundary, a
non-reflective boundary condition is imposed to pre-
vent reflection of outgoing waves and their unsta-
ble interaction with the flow inside the solution do-
main. Time-stepping is fully explicit. The numerical
method is tested by solving both the Orr-Sommerfeld
equation and the full Navier-Stokes equations for
steady-flow solutions. Agreement between computa-
tions and theory and other published results is good.

INTRODUCTION

To investigate the properties of coherent struc-
tures in transitioning and turbulent boundary layers,
in particular their soliton-like properties (Kachanov
1994, Bulbeck et al. 1994) and other issues related to
turbulent fine-scale motions, an accurate numerical
method has been developed to simulate a spatially-
evolving incompressible boundary layer. The accu-
racy of the numerical method derives from the spec-
tral discretisation of the spatial derivatives in the
wall-normal and spanwise directions, and high-order
compact difference schemes in the streamwise direc-
tion. For accurate direct numerical simulation of

boundary layer flows, researchers have in the past
used spectral methods in all three directions (e.g.
Spalart et al. (1991), Laurien and Kleiser (1989)).
However, the use of a Fourier spectral method in the
streamwise direction assumes periodicity in this direc-
tion, and only temporally-evolving boundary layers
can be simulated. Recently, Joslin et al. (1992) de-
veloped a mixed spectral/compact-difference method
(using Chebyshev polynomials with an algebraic map-
ping in the wall normal direction) in which the bound-
ary layer was allowed to evolve in the streamwise
direction. They solved the equations in primitive-
variable form using a time-splitting scheme and used
a buffer-domain technique to avoid reflections of out-
going waves.

The present work adapts the method of Buell
(1994) to spatially-evolving boundary layer flows.
High accuracy is achieved by using expansion func-
tion based on Jacobi polynomials with an exponen-
tial mapping which clusters grid points close to the
wall (Spalart et al. 1991). Time-splitting errors and
complications associated with solving for pressure are
avoided as the equations are cast in velocity-vorticity
form. The problem of outgoing waves is treated by us-
ing a non-reflective outflow boundary condition, thus
avoiding the need for a buffer-domain and the associ-
ated memory and CPU requirements.

GOVERNING EQUATIONS

The simulated flow is three-dimensional and un-
steady and so the governing equations are the full
incompressible Navier-Stokes equations. The equa-
tions to be advanced in time are derived by taking
the curl of the momentum equations twice and re-
taining the wall-normal components of velocity and
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vorticity. They are:

BV% _ 62H1 _ 62H3
8t ~ dzdy Ox?
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with boundary conditions

u,v,w=0aty=0and
% — Up and v, w — 0 as y — co.

T is the streamwise co-ordinate, y the wall-normal
co-ordinate and z the spanwise co-ordinate. The fluid
velocity is @ = {u,v,w} and the fluid vorticity is
@ = {wg,wy,w;} = V x @. H is the vector of the
nonlinear terms, @ X U.

At the end of each timestep, w is solved for using

Pw  Pw  dwy 0%y 3)
8z ' 8z2 8z  Oydz
then u is recovered directly from the continuity
equation,
du v Ow
= )
Oz dy Oz

The remaining components of vorticity, w; and w;,
are recovered from their definitions.

NUMERICAL METHOD
Spatial Discretisation

The numerical method is hybrid, in that the solu-
tion domain in the three directions is spatially discre-

tised in three different ways. The solution domain is
shown in Figure 1. It has finite length in the stream-
wise and spanwise directions, and is semi-infinite in
the wall normal direction. In the streamwise direc-
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=

Figure 1: Diagram of the solution domain

tion, high-order compact difference schemes are used

for evaluating streamwise derivatives. The compact
schemes (Lele (1992)) are sixth-order accurate with a
five-point stencil, except at the boundary and near-
to-boundary nodes:

The first derivative of a function f(z) defined on
agrid z; = tAz,i=0...N and with f; = f(z;)is
given by

afig,+fi+eafi_;=
2 (5(fir1 = fic1) + §(firz — fiz2))  (B)

with & = 1/3, a = 14/9 and b = 1/9.

For the second derivative, the scheme is

affyi+fi'+afil,=
aez(a(figr —2fi + ficr) +
2(fiva — 2fi + fi-2)) (6)

with @ = 2/11, a = 12/11 and b = 3/1L.

Derivatives at all grid points are calculated by ap-
plying these equations at each grid point, then solving
the resultant tridiagonal system of equations. The
fourth-derivative in the V*v term in (1) is evaluated
by two applications of (6).

In the wall-normal direction, the spectral method
of Spalart et al. (1991) based on the (0,1) Jacobi
polynomials, ,-Eo'l)(f), is used. The Jacobi polyno-
mials, defined on the domain & € [—1, 1] are mapped
to the domain y € [0, co) using the exponential map-
ping

= 217_ 1:
= e (7)

where Y, is a mapping parameter.

The expansion functions based on the Jacobi
polynomials are chosen to automatically satisfy the
boundary conditions. Three sets of polynomials are
required to expand the components of velocity and
vorticity in the wall-normal direction; those that have
zero, one and two zeroes at the wall. We call these
the fu, gn and h, polynomials respectively, and their
definitions are

faly) = PPV(2n-1),
gn(y) = (1—n)nPLY(2n-1),
ha(y) = (1—n)nPC(2n—1) (8)

u, w, and wy are expanded in terms of the g, poly-
nomials. v, by continuity, has two zeroes at the wall,
and therefore uses the h, polynomials. w, and w, use
the fn polynomials. In all three cases, the function
and all of its derivatives go to zero as y — oo.

In the spanwise direction, periodicity is assumed,
and so a Fourier spectral method is used.
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In summary, a component of velocity and vorticity
¢ can be expanded in the form:

¢(z,y,2,t) =

nz

e g

2 ny _
S Y e v (10)

k=—2F j=1

where z; = z, + 1Az, ¢ = 0...nz and ¥;(y) is
either f;(y), ¢;(y) or h;(y).

The unknowns to be solved for at each timestep are

the nT x ny X nz expansion coefficients, (,?;J-k(:c,-). A
Galerkin statement is applied to each of the governing
equations to generate, in terms of the expansion co-
efficients, ordinary differential equations for V2v and
wy and algebraic equations for the other quantities.

Temporal Discretisation
Time-stepping of the 0.D.Es is fully explicit, and
a second-order Adams Bashforth method is used for

temporal discretisation.

Extra Functions

In the wall-normal direction, extra functions are
added to the expansions of the u— and v—velocity
components to ensure they both asymptote to their
respective freestream values at the edge of the bound-
ary layer. The modified expansions of u and v are

ny
u = Us(l=n)+ Y igi(y)
j=1

ny—1

v o= 1=+ whi(y) (11)
=1

Us can be a function of &, and is specified. On the
other hand, outflow at the edge of the boundary layer,
Vg, 1s not known a priori, and must be calculated as
part of the solution.

Outflow/Inflow Boundary Conditions
To avoid spurious reflections of outgoing waves

back into the domain at the outflow boundary, a non-
reflective boundary condition needs to be applied. In
this case, all variables are forced to satisfy the con-
vective outflow condition

@- = —ca—qb (12)
ot oz
where ¢ is the speed of the outgoing wave.

The direct simulation of a turbulent flow begins by
specifying as an inflow boundary condition an unsta-
ble laminar flow. This unstable flow, which is then
allowed to evolve in time into a fully turbulent flow,
is obtained from Linear Stability Theory. In the case
of incompressible boundary layer flow, linear stability
is governed by the Orr-Sommerfeld equation:

(U _ C)(¢n —0.'2:;5) _ U”tﬁ —
al_R((ﬁmr_ 2a2¢n+ ar4¢) (13)
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The disturbance streamfunction is given by
U(z,y,t) = ¢(y)e (== = §(y)e2(==1) where o
is the wavenumber, 3 is the frequency and ¢ = 3/«
is the phase velocity of the disturbance. I/ = U(y) is
the mean velocity profile, R is the Reynolds number
based on boundary layer displacement thickness and
differentiation, denoted by ’, is with respect to y, the
direction normal to the surface. This equation is a
dispersion relation between ¢, & and ¢

To satisfy boundary conditions, ¢ is expanded in
terms of the h,(y) polynomials. The Galerkin spec-
tral method described above is used to discretise this
equation, and an eigenvalue/eigenfunction problem
results which is solved numerically using a QR algo-
rithm. Given a mean flow profile (a Blasius profile is
used), a Reynolds number and a complex streamwise
wavenumber (., ®;), the solution is a set of com-
plex phase velocities (¢r, ¢;) and complex disturbance
eigenfunctions, from which profiles of the disturbance
velocities can be generated.

For a spatially-evolving boundary layer the distur-
bance frequency 3 will be real and the corresponding
complex wavenumber « needs to be calculated. This
is accomplished using a Newton-Rhapson method and
the Orr-Sommerfeld solver to find the complex «
which corresponds to the given real f3.

Calculated using a spectral method wilh 64 polynomiabs

0.0 1000.0 2000.0 2000.0
As, Asynolds number based on displacement thickneas

Yyavne 3. Curves of constant «,.

Figure 2: Comparison of computed lines of constant «;
(above) and Schlichting's (1960) results (below)

RESULTS

Orr-Sommerfeld Solver

The Orr-Sommerfeld solver was used to produce
Figure 2. In this figure, disturbances with 3, R pa-
rameters which lie in the shaded region (i.e. w; < ()



92

are unstable. For a given simulation Reynolds num-
ber, the range of 3 corresponding to unstable dis-
turbances can be determined. Good agreement with
Schlichting’s (1960) published results are evident.

Figure 3. shows the good agreement between the
Orr-Sommerfeld eigenfunctions computed using the
present method and Jordinson’s (1970) published val-
ues. There is only a small variation in the computed
eigenfunction as the mapping parameter, ¥,, changes
from 4.0 to 8.0.

0.S. Eigenfunctions, Blasius Mean Flow
B=0.1122, 4=0.3086, o=0.0057
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Figure 3: Orr-Sommerfeld eigenfunctions

Steady Navier-Stokes Solver

In Figure 4, results are presented from a compu-
tation in which the inflow boundary condition was a
steady Blasius profile, and the simulation was con-
tinued until a steady-state was reached. In this way,
the spatial development of the boundary layer pro-
files was captured. Comparison is made between u-
profiles at several different z-locations and the Bla-
sius profile. The ¥ co-ordinate is normalised with re-
spect to (R5.’ /z)? where R;: is the Reynolds number
based on displacement thickness at the inflow bound-
ary. Agreement is excellent as the Blasius equation
is a reasonable approximation to the steady Navier-
Stokes equations at the Reynolds numbers consid-
ered.

CONCLUSION

A mixed spectral/compact difference numerical
method has been developed to simulate the spatial
evolution of a boundary layer. By casting the govern-
ing equations in velocity-vorticity form, complications
and splitting errors associated with the calculation of
pressure are avoided. To prevent the reflection of out-
going waves back into the solution domain, convec-
tive boundary conditions are imposed at the outflow
boundary. The numerical method has been used to
successfully compute solutions to the Orr-Sommerfeld

R,.=500-579, R,=500

Blasius

! o R,=514
g o R,=528
* Ry=541
» R, =654
« R,=567
v R,=579
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1=y (Rel®)"™

Figure 4: Steady-flow solutions to the Navier-Stokes
equations

equation and a steady solution to the Navier-Stokes
equation. The latter shows good agreement with Bla-
sius’ theory.

REFERENCES

Buell, J.C. (1991), ‘A hybrid numerical method
for three-dimensional spatially-developing free-shear
flows’, Journal of Computational Physics 95, 313-338

Bulbeck, C.J., Chong, M.S., Soria, J. (1994), ‘Be-
haviour of streamwise vortices in a three-dimensional
free shear flow’, Proc. International Colloquium on
Jets, Wakes and Shear Layers, CSIRO DBCE High-
ett, Australia, 18-20 April 1994

Kachanov, Y. (1994), ‘Physical Mechanisms of
Laminar Boundary-Layer Transition’, Annu. Rev.
Fluid Mech. 1994. 26, 411-482

Jordinson, R. (1970), ‘The flat plate boundary
layer. Part 1. Numerical integration of the Orr-
Sommerfeld equation’ Journal of Fluid Mechanics
(43)4, 801-811

Joslin, R.D., Streett, C.L., Chang, C.L. (1992),
“Validation of Three-Dimensional Incompressible
Spatial Direct Numerical Simulation Code’, NASA
Technical Paper 3205, July 1992

Laurien E., Kleiser, L. (1989), ‘Numerical simula-
tion of boundary-layer transition and transition con-
trol’, Journal of Fluid Mechanics 199, 403-440

Lele, S.K. (1992),
schemes with spectral-like resolution’,
Computational Physics 103, 16-42

Schlichting, H. (1960), ‘Boundary Layer Theory’,
McGraw-Hill, 1960

Spalart, P.R., Moser, R.D., Rogers, M.M. (1991),
‘Spectral Methods for the Navier-Stokes Equations
with One Infinite and Two Periodic Directions’, Jour-
nal of Computational Physics 96, 297-324

‘Compact finite difference
Journal of



