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ABSTRACT

This paper examines early time solutions of the
flow of 2 homogeneous viscous fluid around an impul-
sively started cylinder, within the context of laminar
boundary layer theory. In particular, the finite time
breakdown of boundary-layer theory for separating
flows is examined. It is demonstrated that inclusion
of higher-orders terms into the boundary-layer formu-
lation can overcome this difficulty, as well as provid-
ing insight into reasons for such a breakdown.

INTRODUCTION

It has long been known that the boundary-layer
equations provide a good approximation to laminar
flow when flow separation is not present. In the limit
of infinite Reynolds number, incompressible fluid flow
can often be broken down into a large region of
in-viscid irrotational flow, accompanied by a ‘thin’
boundary-layer containing all of the vorticity. The
aim is then to match the flow in the boundary-layer
with the irrotational flow outside.

There are some situations, however, where this pro-
cedure fails, generally due to a local violation of the
assumptions of the boundary-layer equations. The
unsteady flow around an impulsively started cylinder
is one such example, since the boundary-layer equa-
tions are known to produce solutions that “break-
down” at a finite (non-dimensional) time of around
t = 3.0 (Van Dommelen & Shen, 1980). This break-
down is indicated by infinite values of velocity and
displacement thickness within the boundary-layer.

As the boundary-layer equations can be viewed
as a reduction of the Navier-Stokes equation in the
limit of infinite Reynolds number, previous techniques
for dealing with this singularity involve the ad-hoc

inclusion of finite Reynolds number terms into the
boundary-layer equations. One strategy that has
been implemented (Henkes & Veldman, 1987; Riley
& Vasantha, 1989) is the incorporation of an interac-
tion law into the boundary conditions, in order to ac-
count for the effect of a thickening boundary-layer on
the external (irrotational) solution. While this tech-
nique appeared to suppress the singularity, theoreti-
cal work of Smith (1988), and Tutty & Cowley (1986)
has shown that this type of interaction law will break
down at a finite time for any Reynolds number.

The alternate strategy taken in this work is to look
at the inclusion of other higher-order terms into the
boundary-layer equations themselves. The term cho-
sen permits pressure to vary across the boundary-
layer, something that is not true of the traditional
boundary-layer approximation.

GOVERNING EQUATIONS

The Helmholtz vorticity equation for non-
dimensionalised two dimensional flow, relative to the
cylinder, in cylindrical co-ordinates, can be written
as
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for the polar velocity components (ur, ug), vorticity
¢, cylinder velocity I/, cylinder diameter d, and kine-
matic viscosity v.

It is convenient to consider the flow based on the
reference frame of the cylinder, which leads to bound-
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ary conditions, u — (U/ cos @, U sinf) as r — 0o, as
well as no slip conditions on the boundary.

In order to satisfy the continuity equation for a
homogeneous flow, a stream function 1,5 can be defined
such that
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Introducing the classical boundary-layer scalings
for a length scale ¢ = 1/+/Re, we can define

r=14ey, 0=m—z, 1 =2, u, = 2ev, upg = —2u

(5)
so that rescaled stream function v and vorticity ( are
given as

(=€, b=1e (6)
With these scalings, the governing equations (1)
and (4) become
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From the assumption of potential flow outside
the boundary-layer gives the boundary condition
O /dy — sinz as y — co. We are free to choose
¥(z,0,t) = 0, and by assuming symmetry about
y =0, ¥(0,y,t) = ¢(m,y,t) = 0. The no-slip con-
dition on the surface requires that dv /8y on y = 0

By considering the limit as ¢ — 0, equations (7),
(8), and (9) yield the classical boundary-layer equa-
tions, in vorticity form
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Given the limitation of the classical boundary-
layer equations for separating flows, we next consider
ways of overcoming these shortcomings. Cowley, Van

Dommelen & Lam (1990) have argued that since the
boundary-layer formulation does not allow pressure
to vary across the layer, and that viscosity is also ne-
glected in this direction, there is no force to oppose
the ejection of fluid from the boundary-layer. With
this in mind, we consider the addition of a higher-
order term (€2(6%1)/(82%)) in (8) into the stream
function-vorticity equation, allowing the pressure to
vary across the boundary-layer, so that the stream
function is related to vorticity as
Py | 0%

NUMERICAL TECHNIQUE

Initially, when 1, and up are instantaneously set
to irrotational flow everywhere, the vorticity equation
(10) simplifies to the heat equation. The analytical
solution of this predicts that initially vorticity will be
infinite on the boundary, in the limit as £ — co, but
this singularity can be resolved by the introduction
of suitable variables.
Y 4
o oe=
This solution also suggests that grid stretching should
be performed in the radial direction, and an exponen-
tial stretching is used to achieve the required resolu-
tion near the inner boundary. The outer boundary
is truncated at a finite distance, typically ¥ = 30,
although results are seen to be relatively insensitive

Z=C/t, Y=

to this parameter, provided it is large.

Since we expect singular behaviour within the
boundary-layer, the grid stretching of Riley & Vasan-
tha (1989) is introduced, which allows concentration
of the grid in the z direction towards regions of sharp
vorticity change.

The numerical solution of equation (10) for ¢ > 0
proceeds with use of centered differences on all terms.
Implicit time stepping is used, with successive ap-
proximations being used on non-linear terms at each
time step. For the classical boundary-layer equations,
the implicit terms were solved using tridiagonal elimi-
nation, while the extended equations required the use
of a block tridiagonal scheme to solve for the stream
function.

RESULTS

In figure (1) the boundary-layer displacement
thickness, §(z) = [5~ (1 — u(z,y)/sinz) dy, is pre-
sented. This quantity is useful, as it provides compar-
ison with previously mentioned work on boundary-
layer break down. From these results, it is clear
that the boundary-layer is quickly growing towards a
very large displacement thickness, at around the time
and position predicted by VanDommelen & Shen, of
z; = 1.937 and £, = 3.00.
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Figure 1: boundary-layer displacement thickness, 6(2),
for Re — 00,0<t<3.0,6t=0.1

The next case considered is that were the pressure
is premitted to vary across the boundary-layer, by
solving equation (13) for stream function. In figure
(2) demonstrates how the singularity is diminished
with decreasing Reynolds number. It is evident that
the singularity encountered in the infinite Reynolds
number case is a result of the large ejection of vortic-
ity from withing the boundary layer, occuring at finite
Reynolds number. As this parameter is increased, the
erruption becomes more sudden, an thus harder to
track numerically.

In the stream function, this process is evident func-
tion as the splitting of the large recirculation region,
into smaller circulation regions, a phenomenon pre-
dicted by the numerical and experimental work of Ta
Phuoc Loc & Bouard (1985), as well as others.

Simulations were also performed on the full
boundary-layer equation, given by (7), (8) and (9).
While there are some changes in the detail of the flow,
the general sequence of events is maintained.

CONCLUSION

In paper demonstrates that by modifying the clas-
sical boundary-layer equation, to take into account
the effect of varying pressure across the layer, it is pos-
sible to evolve an impulsively-started boundary-layer
flow well past times possible in classical boundary-
layer theory. Insight is also provided into how
boundary-layer theory can break down, and how this
is related to the evolution of boundary layers.
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Figure 2: Stream Function and Vorticity, —20 < ¢ <5 AP =0.25. -3 < { < 2. A(



