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ABSTRACT

The non-parallel effects on the stability of the ver-
tical boundary layer in a differentially heated cavity
are investigated by incorporating streamwise varia-
tion into the linear stability equations. Such an anal-
ysis gives rise to growth rates and wavenumbers that
are highly dependent on the transverse location and
the disturbance variable under consideration. This is
in contrast with the parallel stability analysis gener-
ally applied to such flows in which the growth rates
and wavenumbers are independent of transverse loca-
tion and disturbance variable. A direct stability anal-
ysis is also performed by integration of the complete
Navier-Stokes equations. The stability properties are
obtained by introducing an oscillatory heat input at
the upstream end of the boundary layer. The non-
parallel linear stability analysis is shown to be in good
agreement with the direct stability analysis.

INTRODUCTION

The flow configuration is a square cavity of width,
L, with isothermal vertical side walls at tempera-
tures, T}, and T, and adiabatic top and bottom walls.
The flow is governed by the two-dimensional Navier-
Stokes equations under the Boussinesq assumption
and by choosing length, velocity and temperature
scales, L, ¥/L and AT = (T, — T;)/2 these form

the set of non-dimensional equations,
U. +V, =0, (1)

R
Uy +UU, + VU, = —Py +Upg +Uyy + P—ﬁT, (2)

Vi+ UV, 4+VV, =—Py+sz+Vyy’ (3)

1
L+ UT: + VT, =E(TM+TW)+S. (4)

Previous investigators have studied the large time
behaviour for his system over a range of Ra =
gBATL3 /ux and Pr = v/k and it is known to
undergo a transition from steady laminar flow to un-
steady turbulent flow (Paolucci and Chenoweth, 1989,
Janssen and Henkes, 1995). However, for Ra =
6%10% and Pr = 7.5, used throughout this study, the
flow is steady. Perturbations are introduced into the
steady state system for the direct stability analysis.
The numerical solution to the steady state system is
used as the baseflow for the non-parallel linear stabil-
ity analysis.

DIRECT STABILITY ANALYSIS

The non-dimensionalised Navier-Stokes equations
are solved numerically using an implicit second order
time integration and a finite volume spatial discretiza-
tion on a non-staggered mesh. The formulation is the
same as that used in Patterson and Armfield (1990)
and further details are provided in Armfield (1991).
A time step of At = 5% 1077 and a 120 % 120 grid is
used in which the grid spacing increases with distance
away from the boundaries.

Figure 1 shows the resulting steady state temper-
ature and streamfunction fields, (T—, 1), with the hot
wall on the left side of the cavity. The flow exhibits
thin vertical boundary layers on the hot and cold
walls and the interior is vertically stratified. The per-
turbation is then introduced as a sinusoidal heat in-
put at the base of the hot boundary layer. Defining
the origin to be at the base of the hot wall, the source
term, .S, is non-zero only in the region, 0 < = < 0.01,
0 < y < 0.01 where,

S = Asin(2r fit). (5)

After an initial transient phase, where the distur-
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Figure 1: (a) The temperature, T, contours at steady state. (b) The streamfunction, 1 contours at steady state.

Figure 2: (a) The temperature perturbatiog_,'T-*T and
(b) the vertical velocity perturbation, U — U.

bance spreads up the boundary layer, a steady pat-
tern of oscillations is established. Shown in figure 2
are the instantaneous temperature and vertical veloc-
ity perturbation fields resulting from a perturbation
of frequency f; = 4000. The perturbation is rapidly
damped once it reaches the top boundary and is not
carried across to the opposite cold wall. This was the
case for all frequencies considered in this study.

Direct stability analysis using the complete Navier-
Stokes equations allows both nonparallel and nonlin-
ear effects to be investigated. Here, the disturbance
amplitude A was chosen such that the resulting per-
turbations remained linear. Linearity was tested by
ensuring that the wave growth rate was insensitive to
A and a value of A = 0.1 was used throughout this
study.

TWO-DIMENSIONAL STABILITY ANALYSIS

Numerous linear stability studies of vertical natural
convection boundary layers have been performed fol-
lowing the first formulation of the problem by Plapp
(1957). The linear stability equations for the per-
turbation streamfunction and temperature, (¢',T")
given a baseflow, (1,7') are formed by substituting
(¥ + ¢/, T + T') into the Navier-Stokes equations
and then eliminating the non-linear terms. Typically
these analyses have used baseflows attained from sim-
ilarity solutions using the boundary layer assump-
tions. A parallel flow approximation is then made
and the non-parallel baseflow terms are neglected in
the stability equations. The perturbations are then
assumed to take the form,

(W', T') = (¥(y), T(y)) exp(kz — iwt). (6)

Here, the non-parallel stability equations are formu-
lated by including a first order correction to the paral-
lel flow assumption whereby the first derivative in the
streamwise direction of the baseflow and the pertur-
bation eigenfunction are not neglected. Furthermore,
the baseflow used is the numerical solution to the full
Navier-Stokes equations and thus the stability results
are directly comparable to the direct stability anal-
ysis. The baseflow streamfunction and temperature
fields, at a given height 2, are assumed to have the
form,

E(x,y) = %(mﬂay) =+ 5@1(‘7"0: y): (7)
T(E’a y) = T(mﬂw y) +£Tx($01 y), (8)

where £ = o — z¢ and the subscripts refer to differ-
entiation. The perturbation is represented by,

¥'(2,y,t) = (¢o(y) + Eb1(y)) exp(ka —iwt), (9)
T'(z,y,t) = (To(y) +£T1(y)) exp(kx —iwt). (10)

Hence, at any given location £ = zy we seek con-

stant frequency solutions where w is the angular fre-
quency, (k) is the spatial amplification and J(k) is



the wavenumber. Substituting equations (7-10) into
the Navier-Stokes equations gives the coupled set of
eigenvalue equations,

Lovo + Lo2To + Litpo + Loty =0,  (11)

Mo 190 + Mo 2To + My 1900 + My 2To +
Myt + My 2T =0, (12)

Lo 191+ Lo2T1 + L1y + Lyypo + Latpy = 0, (13)
My 1ty + My 2Ty 4 My 31 + M 2Ty +
M3 %0 + M3 2Ty + My 191 + My2T) = 0. (14)

The differential operators are given below, in which
D refers to differentiation with respect to y.

Lo,y = (Dz + k%)) +
(P, k—zw)(D2 +5%) = Py b,
1
Lys = —aD,

Ll = Exny _az(Da i kzD)?

By _-(;—(41;132 + 456%) + E (D? + 3k%)
r

—2tkw — —,2kD,

ny

L; = Ezy(sz + ks) - ayyymks

L4 = Ezy(D2 i 3k2) - Eyyyz:
M()'l = —Tyk,
= kK +D?) —i m
My 2 = - (k* + D%) —iw + ko,
M, =T,D, M2 =—y,D,
My, = _Tya My o = _G_PQk + Ui’ya
M3,1 = _szks M3.2 = wzyk
Myg = —Tyy, My = v,

The linear stability equations have been non-
dimensionalised using a more general scaling than
is used for the cavity. An arbitrary length scale,
d and a velocity scale, gBATG? /v are used and
Gr = gBATE® /v?. The equations (11-14) are solved
with homogeneous boundary conditions for ¢g, ¢oy,
b1, ¢1y, Toand T} at = 0 and = = Tmaz. The
outer boundary condition is chosen to reduce compu-
tational time while maintaining accuracy and &4, of
between 0.1 and 0.2 was generally used. The numer-
ical solution procedure is a straightforward shooting
method with orthonormalisation (Davey, 1973).

RESULTS
The results at a height of z = (0.2 are first exam-
ined. Figure 3(a-b) shows the baseflow temperature
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Figure 3: The steady state baseflows for the tempera-
ture (a) and vertical velocity (b). The temperature eigen-
function, Tp (solid line) and the numerical eigenfunction
A7 (circles) (c) and the vertical velocity eigenfunction,
®oy (solid line) and the numerical eigenfunction Ay (cir-
cles) (d). All quantities are for x=0.2.

and vertical velocity at z = 0.2 which results from
the steady state numerical simulation. A perturba-
tion was imposed at the base of the hot boundary
layer with a frequency, f; = 4000 and the amplitude,
AP(.T:, y), of the perturbation signal observed in a dis-
turbance variable, p, was calculated. For example,
A7(0.2,y) is the amplitude of the temperature dis-
turbance at a height £ = 0.2. This quantity can be
compared to the absolute value of the eigenfunction
from the two-dimensional stability analysis. In fig-
ure 3(c) the eigenfunction, T5(0.2,y), and the ampli-
tude, Ap(0.2,y), each normalised by their maxima,
are shown. The agreement between the non-parallel
anlysis and the direct stability analysis is very good.
Similar agreement is also seen between the eigenfunc-
tion for the vertical velocity, ¢, and Ay (0.2,y) in
figure 3(d).

The amplification seen in any flow variable p, de-
fined as a = (0Ap(z,y)/0z)/Ap(2,y), can be cal-
culated using the direct stability analysis. Using
the linear stability analysis the amplification is a =
R(k) + R(p1(y)/po(y)). Shown in figure 4 are the
amplifications of the temperature signal for a range
of frequencies and at heights, z = 0.2 and z = 0.5.
Also shown are the amplifications found using paral-
lel assumptions in the linear stability analysis. In this
case the stability equations reduce to,

Lo 130 + Lo 2Ty =0, (15)
Mo 130 + My 2Tp = 0. (16)

Clearly, the solution using the parallel assumptions is
unsatisfactory and even half way up the cavity, where
the flow is almost parallel, there is large discrepancy
between the parallel stability analysis and the direct
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Figure 4: The amplification in the temperature signal
using non-parallel assumptions, a = k. + R(T\/Tp)
(solid lines), using parallel assumptions, a = k,
(dashed lines) and the numerical simulation, & =
(0AT/0z) /AT (circles) at x=0.2 and x=0.5 for fre-
quencies f; = 2000, 4000, 6000, 8000.

stability analysis. The amplification is highly depen-
dent on the transverse location and this is only mod-
elled when the non-parallel effects are taken into ac-
count.

Estimates of the wavelength at certain distances
along the wall can be made by measuring the peak-to-
peak distances. In the two-dimensional linear analy-
sis the wavenumber is also dependent on the trans-
verse location and for the temperature signal the
wavenumber is, K = J(k) + I(T1/Tp). Figure 5
shows the wavenumbers, K((y) at locations, z = 0.3,
z = 0.5 and £ = 0.7 up the hot wall for f; = 3000.
Also shown are the estimates of the wavenumber de-
termined by the peak-to-peak distance observed in
the numerical simulation and the wavenumbers de-
termined using parallel linear stability analysis. The
non-parallel analysis predicts the wavenumber more
accurately than the parallel analysis. The sharp dip

30 30 30
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Figure 5: The temperature wavenumber, K = k; +
(T /To) (solid lines), the temperature wavenumber us-
ing parallel assumptions (dashed lines) and the wavenum-
ber determined from the direct analysis (circles) at loca-
tions (a) x=0.3, (b) x=0.5 and (c) x=0.7.

in the wavenumber at around y = 0.025 seen in the
two-dimensional analysis is associated with a 180 de-
grees phase change in the temperature eigenfunction
that occurs at this location and is a feature of the
flow that the parallel analysis cannot predict.

CONCLUSIONS

The non-parallel formulation for the linear sta-
bility equations has resulted in excellent agreement
with the direct stability results. Although the par-
allel formulation predicted the amplification well at
some cross-stream locations it performed poorly at
others. Agreement between previous parallel analy-
sis and experimental results may be reliant on the
amplifications being measured at these points. The
parallel analysis also overpredicted the wavenumber
of the disturbance.

Acknowledgements Support for this work was pro-
vided through the provision of an Australian Post-
graduate Research Award and the Samaha Research
Scholarship.

REFERENCES

Armfield, S.W., 1991, Finite difference solutions of
the Navier-Stokes equations on staggered and non-
staggered grids, Computers Fluids, 20(1):1-17.

Davey, A., 1973, A simple numerical method for
solving Orr-Sommerfeld problems, Q.J. Mech. Appl.
Math., 26(4):401-411.

Janssen, R.J.A. & Henkes, R.A.W.M., 1995, Influ-
ence of Prandtl number on stability mechanisms and
transition in a differentially heated square cavity, J.
Fluid Mech. In Press.

Paolucei, S. & Chenoweth, D.R., 1985, Transition
to chaos in a differentially heated cavity, J. Fluid
Mech., 201:379-410.

Patterson, J.C. & Armfield, S.W., 1990, Transient
features of natural convection in a cavity, J. Fluid
Mech., 219:469-497.

Plapp, J.E., 1957, The analytic study of the lam-
inar boundary layer stability in free convection. J.
Aero. Sci., 24:318-319.



