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ABSTRACT

The dispersion of material from an instantaneous point
release and a constant-gradient release in homogeneous tur-
bulence is considered. Expanding on Taylor’s (1921) ap-
proach, we allow for anisotropic flows with broken re-
flexion symmetry (i.e. lacking mirror symmetry; Batche-
lor, 1953). By considering Lagrangian trajectories in such
flows and using appropriate high Reynolds-number models
of them, significant qualitative and quantitative variations
from Taylor’s results are found. These include marked
oscillations in the velocity autocorrelations, drastic reduc-
tions in turbulent dispersion, and spiralling of Lagrangian
trajectories. As proposed by Moffatt (1983), the angular
momentum of Lagrangian particles is a key parameter and
‘skew-diffusion,” i.e. transport orthogonal to concentration
gradients, is a prominent effect.

INTRODUCTION

Taylor (1921) provides a simple and powerful exposition
of transport in turbulent flows. He derived the dispersion
(mean-square displacement) in terms of the velocity auto-
correlation of Lagrangian trajectories. For simple isotropic,
homogeneous and stationary flows, he further assumed a
simple exponential function for the autocorrelation and ob-
tained a comprehensive description of the dispersion. Since
the transport of scalars is expected to be predominantly ac-
complished by the advective transport, Taylor’s result gives
a number of anticipated transport effects, particularly the
eddy-diffusion character at large times.

More modern theories expand on Taylor's work by
attempting to predict the velocity autocorrelation based on
physical properties of turbulent flows, notably the small-
scale acceleration field. Beginning with Obhukov (1959),
through to Thomson (1987), Borgas & Sawford (1991,
1994) and Pope (1994), an approach has developed with
stochastic models of the Lagrangian-velocity time series in
the form of a Langevin equation, where it is understood
that the time scales resolved are much greater than the
Kolmogorov microscales where viscous effects are at work
(Monin & Yaglom, 1975). The viscous effects manifest
very large fluid-particle accelerations, correlated over very
short times, so for sufficiently coarse times, the Lagrangian

properties are described as an approximate diffusion in
velocity phase space. Simply with this knowledge, and the
further specification of statistically homogeneous, isotropic
and stationary flow fields, we obtain the prediction that
the velocity autocorrelation is an exponentially decreasing
function of time.

Despite the simplicity of this approach and the ease
with which apparent generalisations to inhomogeneous
turbulence may be made, the utility beyond the highly
idealised example is unclear. This is mainly because no
general unique diffusion process in velocity-position phase
space can be written down with present knowledge. Thus
to shed further light on the problems involved with such
Lagrangian stochastic models, we examine the flow most
minimally disturbed from the pure idealisation by retaining
homogeneity but relaxing isotropy, but only to the extent
that the flow lacks reflexion symmetry (Borgas et al.,
1995). This means that reflections of flow properties in
planes normal to some direction Q are statistically different.
In the simplest terms, this means that on average flow
trajectories spiral in either a left- or right-handed sense with
respect to 2. The turbulence field is actually axisymmetric
with respect to rotations about 2 (Batchelor, 1953), but we
add the extra restriction of ‘equipartition” of the kinetic
energy amongst the three orthogonal directions at any
point, which is not strictly necessary for our purposes, but
highlights the effects of the broken reflexion. Despite the
‘equipartition’, broken reflexion is a characteristic of the
large energy-containing scales and, as smaller and smaller
scales are examined, the effects of anisotropy are less and
less important.

Recapping, we consider the dispersion due to a field of
turbulent eddies of uniform average kinetic energy (per unit
mass) %af’: and for which the transfer of kinetic energy from
some large-scale forcing mechanism to the viscous scales,
where it is dissipated, is likewise uniform (= & per unit
mass). Two cases are contrasted: first, Taylor’s case where
the eddies have no preferred sense of rotation; second,
when the eddies have some preferred sense of rotation
with respect to the direction Q. Examples of specific
important predictions are: skew turbulent fluxes, where
material is transported at right angles to the gradient of that
material; spiralling fluid-particle trajectories; and drastic
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reductions of transport orthogonal to the axis 2, when
the spiralling sense about this direction is strong. Central
to these properties is the existence and size of the mean
angular momentum of a fluid particle. This is an intrinsic
Lagrangian property and may be non-zero even when
the Eulerian flow statistics are independent of position,
i.e. homogeneous. The Eulerian probability distribution
for velocity at a point is a key property in the velocity
phase-space diffusion process, but there is no information
about angular momentum in it. Another characteristic of
broken-reflexion is non-zero helicity (Moffatt & Tsinober,
1992), but here we make no use of that concept, which is
essentially a two-point velocity statistic.

These results have practical importance in two senses.
First, the idealisations reflect the simplest possible models
of several real fluid flows: rotating turbulent fluid mass
with axisymmetry about the rotation axis (Zeman, 1994); or
with axisymmetry about the direction of an imposed mag-
netic field for the turbulent flow of electrically conducting
fluid (Moffatt, 1983); or with the axisymmetry about the
downstream direction in a wind tunnel with an array of
right (or left) handed propellers acting as a grid (Kholmyan-
sky et al., 1991). Second, and more importantly, we arrive
at a system where the diffusion process for velocity is not
unique, but this non-uniqueness can be related to different
physical situations (each characterised by a specific angular
momentum) and not simply a mathematical artifact. Thus it
is clear additional physical information is required in order
to properly model the dispersion in complex flows.

LAGRANGIAN STOCHASTIC MODELS

The velocity along a Lagrangian trajectory is modelled
with the equation (Thomson, 1987)

du; = a;dt ++/Coed W3 {1)

where the white noise dW reflects the diffusion-like
character in velocity phase space and a is a yet to be
determined function of velocity. The coefficient Cy is
a universal parameter which reflects the relative size of
mean-square turbulent accelerations integrated over the
typical duration of such impulses: a large number of such
uncorrelated acceleration events leads to the diffusion-like
nature. The value of Cjp is around six or seven (Sawford,
1991).

The Lagrangian position of course follows from
dz; = uzdt , (2)

and together with (1), the system is equivalent to the
Fokker-Planck equation
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for the transition probability density, P, between initial
and final states in velocity-position phase space. It is well
known that the Eulerian probability density for velocity at a
point z also satisfies (3), which fixes some properties of g
(Thomson, 1987). For Gaussian one-point statistics, which
are appropriate for the homogeneous case considered here,
we have that

1 Coe
i + eirlliuk (4)
where in general Q is a function of the velocity magnitude
(i.e. a non-linear equation (1)) but for our purposes we
simply take £ as a vector of unknown constant magnitude.
It can be assumed that external symmetry clearly prescribes

the direction that Q points. Finally, the alternating tensor
£k is non-zero only when each of the integers i, j and k
are distinct from one another, and has the value of plus or
minus one for cyclic or acyclic permutations of {1, 2, 3}.

The physical processes embodied in (4) are that a
Lagrangian particle changes its velocity over some short
time predominantly due to random small-scale increments
which are statistically isotropic (independent of direction)
plus an isotropic drift opposed to the current velocity, which
serves to relax the velocity back to zero and maintains
constant kinetic energy, and lastly an anisotropic rotational
change at right angles to the current velocity which does
not change the velocity magnitude (i.e., the kinetic energy)
but induces a spiral trajectory and angular momentum for
the particle in the long run.

The stochastic modelling perspective is that (3) (with
known Eulerian velocity distribution as input) gives a
non-unique model, but which is hoped is constrained by
some other statistical property. Our position is that model
(4) represents different physical flows where 2 can be
related to a physical property disconnected with the one-
point Eulerian velocity distribution. There simply is not
a unique model based solely on the Eulerian velocity
statistics. This apparently subtle distinction is important
because it is the first clear indication of the kind of
extra information required. More general inhomogeneous
anisotropic flows, say convective atmospheric boundary
layers, are too complex to make much theoretical progress
and generally more pragmatic solutions are attempted for
such problems (Luhar & Sawford, 1995).

SOLUTIONS

The linear equation is solved easily. Taylor's work
indicates the importance of the velocity autocorrelation, but
for our case we need a matrix of correlations,

Ri; = (ui(t)u;(0)) ,

therefore obtaining from (1)

Rij = AixRi; (5)

where A;; = —%%’z:ﬁij + eix;Q%. The important things
to note from this cqﬁation are that exponential autocorrela-
tions clearly occur when Q is omitted, but when it is not,
there is coupling of both velocity components orthogonal
to Q. In fact, the velocity component parallel to £ is not
affected by the broken reflexion and the autocorrelation for
this component is given by Taylor’s exponential form.

2
We let i, = % be a Lagrangian time scale with which

we measure time and use o, as a measure of velocity.
Then for the rest of this paper we consider dimensionless
variables relative to these scales and accordingly have
a dimensionless measure of broken reflexion given by
w=|Q|tg.

The fact that orthogonal components of velocity are
coupled in the plane orthogonal to  inevitably means that
(damped) oscillations occur in the autocorrelation. For the
linear model we have

Ry=et, (6)
for the autocorrelation parallel to 2,

R :C_t

coswt , (7)
for the autocorrelations orthogonal to 2, and

Ry = +e tsinwt (8)



for the correlations of orthogonal velocity components
(at two different times). The plus/minus sign in (8)
depends on whether Q and the two orthogonal ordered-
by-time velocity-component directions make a right-handed
coordinate system.

The mean angular momentum (per unit mass) for a fluid
particle follows as

=

i3
=g % uf = £ () x u(t)) at' |

thus, for A = |a|, the mean angular momentum is

t
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and is of course parallel to 2. Thus it is possible to
determine the parameter w in terms of a well defined
physical property, although evidently the magnitude of the
angular momentum is bounded by unity. The reason for
a bound on angular momentum is that for small w the
spiralling rate (or angular velocity) of the trajectory about
9 is likewise small and therefore the angular momentum
is small. For large w, the spiralling rate is large, but the
excursions perpendicular to the axis are small (see below)
which leads to small angular momentum. When there is a
balance between the angular speed of fluid particles, and
the propensity for them to migrate away from the axis, then
we have maximal angular momentum.

It is also possible (Borgas, 1995) to explicitly relate w to
joint Eulerian acceleration and velocity statistics:

1
w=5({uxa) 9/l

Thus w has a maximum magnitude of t2 2> (o2 = § (a.a))
which is of course large, but only possible if velocities
are highly correlated with the large accelerations. It is
more natural to assume that the correlations are weaker
than the maximal and that w ~ 1 is expected for the
broken reflexion flows. Consideration of the Navier-Stokes
equations for rotating homogeneous turbulence suggest that
this is the case for moderate rotation rates (~ t77). These
details may only be formally considered in the context of a
higher-order stochastic models (for accelerations) and will
not be considered any further here.

Because the system is linear the distribution of displace-
ments remains Gaussian and therefore the transport of pas-
sive tracer of negligible molecular diffusivity (released at
the origin say) has a mean distribution which is Gaus-
sian too, with a characteristic ‘width’ in any direction de-
termined by the mean-square fluid-particle displacements
(dispersion) in that direction.

The dispersion for release at the origin according to the
present model (in dimensionless form) is

t
(zizs) = l; (t—17) (Rij(f) + Rﬁ('r)) dr
= Q.Dij(t) H

(10)
the two principle components of the dispersion are shown
in figure 1 and are given as:

Dy=t+et-1 (11)

and
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FIGURE 1. Turbulent dispersion components, D
and D, parallel and perpendicular to Q, respectively.
The dispersion becomes linear for sufficiently long
times (eddy diffusion) but before doing so may show
oscillations if w is large enough. The length-scale
units are effectively ot

D = L 2wetsinwt
LT W T (1wl
2 —t (12)
. (w®—1)(1- e tcoswt)
(1+w?)?

The dispersion parallel to 2, D, is identical to Taylor's
result for isotropic turbulence, while the dispersion in any
direction perpendicular to @, D, is generally smaller
than D), so that the distribution becomes more and more
‘needle-like’ as w increases in size, and only when w
vanishes is the distribution isotropic. At large times, the
dispersion grows linearly with time as in a simple diffusion
process, but the ‘eddy diffusivities,’ D) and D, depend
on direction, with transport orthogonal to 2 much reduced.

PASSIVE TRACER FLUXES

Suppose now that we have a passive tracer (6 say),
of negligible molecular diffusivity, with a mean gradient
of concentration, G (say), in a direction orthogonal to
Q. Thus, # = G.z at ¢ = 0, but which is also the
steady-state mean distribution of tracer. If the gradient
is parallel to £2, then the tracer is effectively well mixed
in planes where the flow lacks reflexion symmetry, and
the interesting oscillating components do not do anything
special.

The maintenance of the constant gradient (g = fed))
requires fluxes of tracer which can be determined by

F) = (0u)) =9funxouf’dundmou

:
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Note that the ‘parallel’ and ‘perpendicular’ subscripts now
refer to the direction of the concentration gradient, G,
which is orthogonal to . Actually, (13) and (14) give
the magnitude of the fluxes, the directions are of course
down the gradient (in the direction —G) and transverse to
the gradient (in the direction G x Q).

We find that there are two distinct turbulent fluxes, one
down the gradient (F)) and one orthogonal to the gradient
(F1), which has been called a skew diffusion effect by
Moffatt (1983). For small-times there is little change to
isotropic down-gradient transport and for large times the
steady-state fluxes are

g gw
Al =g W A=y 7
For small w there is very little transverse flux and for
very large w the transverse flux dominates over the down-
gradient flux, however, both are small in this case. The
maximal transverse flux occurs when w = 1, in which case
the magnitudes of the two fluxes are equal, but only equal
to one half of the flux for isotropic turbulence (w = 0).

It is straightforward to understand the physical origin
of the transverse fluxes. The flux at any point is deter-
mined by the average over all trajectories passing through
that point. Consider the projection of two ‘average’ (but
independent) trajectories in a plane orthogonal to {2, one
commencing above a measurement point M and one (by
symmetry) commencing below it. Suppose that the right-
handed sense of rotation of the trajectories dominates (be-
cause of lack of reflexion); of course, there is no net Eule-
rian velocity at M even with rotational asymmetry. The av-
erage fransverse scalar transport at M, for a mean gradient
that increases ‘up the plane’, follows because concentration
is conserved along the trajectory, but is greater for the up-
per trajectory. Thus on average, trajectories commencing
above the measurement point transport hotter fluid to the
right (say) and trajectories below the measurement point
transport colder fluid to the left. The net effect is a flux of
warmer fluid to the right, i.e. a positive cross-gradient flux.
Of course, there is always the simultaneous down-gradient
flux.

SUMMARY

We have briefly described some turbulent transport
phenomena associated with flows with broken reflexion
symmetry, where turbulent eddies have some preferred
sense of rotation with respect o an axis of symmetry.
Lagrangian fluid-particle trajectories spiral around the axis
such that each particle has a net angular momentum which
is a key measure of the flow character. These coherent
spiral excursions lead oscillations in both the velocity
auto- and cross-correlations, as well as reduced turbulent
transport in planes orthogonal to the axis of symmetry.
The magnitude of the changes, as well as the qualitative
change to Taylor’s (1921) isotropic-dispersion case, are
quite surprising given the ‘mildness’ of the anisotropy
considered.

A particularly noticeable feature is the prediction of
‘skew’ diffusion, where a transverse flux of material
orthogonal to a concentration gradient of the material
occurs simply by virtue of the preferred sense of rotation
of the turbulent eddies. Despite this extra flux, the net
flux from both the down-gradient and transverse fluxes,
is of smaller magnitude than the down-gradient flux in
isotropic turbulence for the same distribution of kinetic
energy, energy dissipation rate, and material-concentration.

This work has broader implications for the stochas-
tic modelling of Lagrangian trajectories in inhomogeneous
(anisotropic) flows, because it is clear that other informa-
tion, besides the Eulerian one-point distribution of velocity,

is required. At least for the present circumstances, this may
mean incorporating angular-momentum statistics for fluid
particles.
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