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ABSTRACT

The effect of the asymmetry caused by buoyancy on
the growth and collapse of a bubble near a rigid ver-
tical wall is examined using a fully three-dimensional
boundary integral method. These results are com-
pared with the predictions of the Kelvin impulse ap-
proximation for the direction of the jet which pene-
trates the bubble during its collapse. The direction
of the jet determines the position of its impact and is
therefore an important factor in the damage causing
mechanism of bubble collapse.

INTRODUCTION

The subject of bubble dynamics has long been an
important field of research due to the damage caused
to hydraulic machinery by cavitation bubbles as well
as the intentional damage inflicted on marine vessels
by underwater explosions. Recent research has fo-
cussed on the effect of the high speed liquid jets which
are often observed to penetrate collapsing bubbles af-
ter the initial expansion phase. Damage to nearby
structures is observed to be related to the flow gen-
erated by the jet impact on the opposite side of the
bubble and the details of the jet motion are therefore
important for the understanding of this aspect.

Numerical studies of the jetting phenomenon have
been carried out during the past decade using the
boundary integral method for both axisymmetric
cases (Blake, Taib and Doherty (1986), Best and
Kucera (1992)) and for fully three-dimensional ge-
ometries (Chahine (1990), Harris (1992)). Comple-
menting the numerical simulations has been the de-
velopment of an analytical approach using the con-
cept of the Kelvin impulse which was applied to bub-
ble dynamics by Benjamin and Ellis (1966), this work
being extended by Blake and Cerone (1982), Blake
(1988) and Best and Blake (1994).

The present paper presents a description of a new
fully three-dimensional boundary integral algorithm
(3DBIM) for bubble dynamics using radial basis func-
tions for the surface approximations. This is followed
by a brief account of the Kelvin impulse theory as
applied to the prediction of the jet direction during
bubble collapse. It is shown that the 3DBIM can clar-
ify and extend the Kelvin impulse results regarding
Jet impact during bubble collapse near a rigid struc-
ture.

MATHEMATICAL FORMULATION

For the range of bubble dynamics under consider-
ation here the fluid flow can be assumed to be invis-
cid, incompressible and irrotational in a domain €,
bounded by 992 = S U X, where S is the free surface
of the bubble and ¥ denotes the other boundaries.
Cartesian coordinates are chosen with gravity acting
vertically downwards in the negative z direction. The
motion is thus defined by a velocity potential ®(zx, t)
(& = (z,y, z)) which satisfies Laplace’s equation

Ve =0, in Q,

together with the kinematic and dynamic boundary
conditions on the bubble surface,
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Do 1 2 Vo o
50 =5Ivel —u(-‘?) — (5 —20)+1,

where D/Dt is the derivative following a fluid parti-
cle. On fixed, rigid boundaries the condition

a®/dn =0,

is applied.

The equations have been non-dimensionalised by
scaling lengths with respect to the maximum bub-
ble radius, R, time with respect to Rn(p/Ap)'/?
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and pressure by Ap = pos — pe, with p. the constant
vapour pressure of the cavity and pe the hydrostatic
pressure at the depth at which inception of the bubble
occurs. The parameter @ = po/Ap can be regarded
as indicating the strength of an explosion where the
bubble contains a non-condensible gas in addition to
the vapour, so that the pressure py exerted by its con-

tents is N
_ %)
Pb—Pc-’r-Po(V y

where A is the ratio of specific heats and po an initial
pressure.

The main interest of the present study is to inves-
tigate the effects of the buoyancy parameter,

and the non-dimensional distance, 7, from a solid
boundary on the direction of the jet as it penetrates
the bubble during the final stages of collapse, since
this will then determine the location of the jet im-
pact on the opposite surface of the bubble.

To complete the formulation, initial conditions for
the bubble shape and position, along with the val-
ues of ® and V@ on the bubble surface are required.
Those given by Best and Kucera (1992) are used in
the examples presented here. These are,

Ry =0.1, $y = —2.5806976

and an initial radial velocity of 25.806976 for a cav-
itation bubble which starts as a sphere of radius Ry
and

Ro =0.1651, @ =0,

with initial velocity zero for an explosion bubble with
@ =100, A = 1.4.

NUMERICAL METHOD

The boundary integral method has become a stan-
dard technique for the numerical simulation of po-
tential flows with a free surface. It is based on the
solution of the following integral equation at each
time step, coupled with integration of the free sur-
face boundary conditions.

@)= [ (5@ 0@ 55 as

d(xz) xTeqQ,
ga= { 19(z) xe€S

where the Green’s function is of the form,
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An important aspect of free surface computations
using this approach is the approximation of the sur-
face normals at a given number of nodes on the bubble
together with the tangential component of the surface
velocity at each node — the normal component hav-
ing been obtained by solving the integral equation.
An element based approach leads to numerical diffi-
culties in constructing a smooth solution, while di-
rect polynomial interpolation to the scattered surface

nodes fails for particular arrangements of the nodes.
The 3DBIM used in the present work employs radial
basis functions so that an interpolant to a function
f(@) is represented as

s(®) = TiLia9(|E — 2;]) + DI big5 ()

where {g;} forms a basis for the space of polynomials
of order not exceeding K. 9 is chosen as the multi-
quadric,

Y|z —z]) = ]z — T2 + 2,

with ¢ a constant. A full account is given in Blake et
al. (1995).

THE KELVIN IMPULSE

The application of the Kelvin impulse of a tran-
sient cavity to predicting the direction of jet im-
pact is described in Best and Blake (1994). In non-
dimensional form the Kelvin impulse (scaled with re-
spect to an(pAp)l‘rz) is defined as,

1= j{ ®ndS,
S

The theory is developed for a cavitation bubble with a
constant internal pressure in terms of a small param-
eter ¢ which is O(1/%). In addition it is assumed that
the buoyancy parameter is O(e) and that the bub-
ble does not depart greatly from its original spherical
shape. With these assumptions the Kelvin impulse
can be approximated in terms of complete and in-
complete Beta functions with an error O(e*). The
components IZ and I resulting from the effects of
the solid boundaries and buoyancy respectively, are
given here for reference.
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T is the period of the motion, r = R® where R is
the radius of the spherical approximation to the bub-
ble shape and I' and p are determined by the solid
boundaries.

If the bubble is not greatly distorted from its spher-
ical shape then the direction of the Kelvin impulse
is related to the direction of translation of its cen-
troid and subsequently the direction of the jet. The
expression for the impulse can therefore be used to
determine a ’zone of attraction’ around a submerged
structure within which the bubble jet will be directed
towards the structure. However, the parameter ¢ is



not small close to the structure and the behaviour of
the bubble jet in this region is addressed below.

RESULTS

In order to compare the predictions of the Kelvin
impulse theory with the 3DBIM the motion of a bub-
ble near a vertical fixed, rigid wall is considered. This
case provides a simple way to introduce asymmetry
by means of the buoyancy force. I" and p are evalu-
ated as

1 1
F=——e, p=-—
i 2y’

where ey is a unit vector normal to the boundary and
directed away from it.

The case of a cavitation bubble with v = 4, § =
0.25 shows good agreement between the 3DBIM and
the Kelvin impulse. The direction of the centroid mo-
tion and the jet is at an angle of approximately 787 to
the horizontal for the 3DBIM compared to 80° for the
Kelvin impulse prediction during the collapse phase.
As the point of inception of the bubble is moved closer
to the vertical wall the agreement between the two
methods becomes less good, as is expected since €
increases.

Figure(1) shows the expansion and collapse of a
cavitation bubble for ¥ = 1.5, § = 0.25 computed
with the 3DBIM. For most of the period of motion
the bubble remains almost spherical departing from
this shape only during the final stage of collapse. A
flattening of the underside of the bubble can be seen
at t = 1.9429 in response to the influences of the wall
on its right and the buoyancy force. The direction of
translation of the centroid at this time is at an angle
of 23° to the horizontal while the Kelvin impulse ap-
proximation gives 43°. However, the jet which forms
at the end of the collapse phase can be seen to move
vertically to pinch off the upper end of the bubble
rather than in the direction of the centroid. Buoy-
ancy therefore acts to change the behaviour of the jet
in this case and the motion of the bubble centroid
does not provide an indication of the jet direction.

Reducing the effect of buoyancy produces the re-
sult shown in figure(2) for v = 1.5, 6 = 0.1. Here the
flattening of the bubble towards the end of its collapse
occurs on the side away from the wall and the jet and
the centroid directions of motion are nearly the same
(approximately 5° to the horizontal). The Kelvin im-
pulse gives an angle of 8.6° for this case. The bubble
shape is close to being axisymmetric and thus when
the asymmetry introduced by buoyancy is small the
Jet direction is approximately in the direction of the
centroid translation.

A computation carried out for an explosion bubble
for the parameters of figure(1) shows very similar be-
haviour but with a lengthening of the bubble period.

These computations show that the effect of buoy-
ancy can influence the direction of the jet that pene-
trates the bubble. A strong buoyancy force can cause
the jet to travel vertically rather than towards the
wall so that its impact is likely to be less damaging
to the structure.
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Figure 1: The growth and collapse of a cavitation bubble for v =1

right hand side of the frame.
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Figure 2: The growth and collapse of a cavitation bubble for v = 1.5, &

right hand side of the frame.



