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ABSTRACT

Fully nonlinear water wave problems are solved
using Euler-Lagrange time stepping methods. The
mixed boundary value problem that arises at each
time step is solved using a desingularized approach.
In the desingularized approach, the singularities
generating the flow field are outside the fluid
domain. This allows the singularity distribution to
be replaced by isolated Rankine sources with the
corresponding reduction in computational
complexity and computer time.

Examples are given for sloshing in a two-
dimensional container and the three-dimensional
diffraction of incident waves by a vertical cylinder.

INTRODUCTION

With the recent increases in computational power,
it has become more practical to solve directly the
nonlinear free surface hydrodynamic problems
associated with ships and offshore structures.  Fully
nonlinear free surface computations can be performed
by a variety of methods. Longuet-Higgins and
Cokelet (1976) first introduced the mixed Euler-
Lagrange method for solving fully nonlinear, two-
dimensional water wave problems in the time
domain by a time-stepping procedure. In this
procedure, a boundary value problem with a Dirichlet
condition on the free surface and a Neumann
condition on the hull surface is solved at each time
step. The kinematic and dynamic free surface
boundary conditions are used to time march the value
of the free surface potential and elevation. The hull
position and surface normal velocities are updated
from the equations of motion of the vessel
Variations of this method have been applied by
many researchers to a wide variety of two- and three-
dimensional problems (cf. Beck 1994).

To successfully implement an Euler-Lagrange
algorithm requires a stable time stepping scheme and
a fast and accurate method to solve the mixed
boundary value problem that results at each time
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step. We use a fourth order Runga-Kutta method for
the time stepping; the mixed boundary value
problem is selved using a desingularized boundary
integral method (cf. Webster 1975, Cao et al. 1991,
Beck 1994, or Beck et al. 1993, 1994). In this
method, the velocity potential is constructed by
singularities distributed on auxiliary surfaces
separated from the problem boundaries and outside
the flow domain. For water wave problems, the
auxiliary surfaces are above the free surface, inside
the hull, and outside the appropriate boundaries at
infinity. The strengths of the singularities are
determined so that the boundary conditions are
satisfied at chosen collocation points. To ensure
the convergence of the method, the desingularization
distance decreases as the computational grid becomes
finer. Because of the desingularization, the resulting
kernel in the integral equation is nonsingular (or
desingularized) and special care is not required to
evaluate integrals over the panels. Simple numerical
quadratures can be used to greatly reduce the
computational effort, particularly by avoiding
transcendental functions. In fact, we have found that
for the source distribution method, the distributed
sources may be replaced by simple isolated Rankine
sources. Isolated Rankine sources also allow the
direct computation of the induced velocities in the
fluid and on its boundaries without further
numerical  integration or differentiation. The
resulting code does not require any special logic and
is easily vectorized. At present, the method is
O(N?2), but we are working on using multipole
expansions to reduce the computational effort to
O(N). The method has been successfully applied to
problems involving nonlinear shallow water waves
(Cao et al. 1993); a submerged spheroid (Bertram et
al. 1991); two and three dimensional stationary
floating bodies (Beck 1994, Beck et al. 1993); and
the wave resistance, added mass, and damping for a
simplified mathematical hull form at forward speed
(Beck et al. 1994).
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FULLY NONLINEAR PROBLEM
FORMULATION

An ideal, incompressible fluid is assumed and
surface tension is neglected. The problem is started
from rest so that the flow remains irrotational. A
coordinate system Oxyz translating in the
negative x direction relative to a space fixed frame
is used. The time dependent velocity of translation
is given by U,(t) . The Oxyz axis system is
chosen such that the z = 0 plane corresponds to
the calm water level and 2z is positive upwards.
The x-z plane is coincident with the centerplane of
the vessel. The total velocity potential of the flow
can then be expressed as

@ =U,(t)x+0(x,y,21) (1

where ¢(x,y,z,t) is the perturbation potential.
Both @ and ¢ satisfy the Laplace equation:

vio=0 (2)

Boundary conditions must be applied on all
surfaces surrounding the fluid domain: the free
surface (Sg), the body surface (Sy), the bottom (Sg)

and the surrounding surface at infinity (S,). A

kinematic body boundary condition is applied on the
instantaneous position of the body wetted surface:

.y
on

where n = (ny, ny, ny) is the unit normal vector
into the surface (out of the fluid domain ) and Vy

o(tini+Vy-n on Sy (3)

is the velocity of a point on the body surface
including rotational effects relative to the Oxyz
coordinate system. The subscripts 1,2,3 refer to
the x, y, and z axis directions respectively. The
kinematic condition is also applied on the bottom:

% _
an
where Vg is the velocity of the bottom relative to

-Uy()n;+Vg-n on Sg 4)

the Oxyz system. For an infinitely deep ocean
equation (4) reduces to

Vo—0 as z— —ee (5)

Finite depth will increase the computational time
because of the additional unknowns necessary to
meet the bottom boundary condition but there is no
increase in computational difficulty. In fact, the
flatness of the bottom is immaterial. The only
overhead relative to a flat bottom is an increase in
the required number of nodes to represent the nonflat
bottom.

On the instantaneous free surface both the
kinematic and dynamic conditions must be satisfied.
The kinematic condition is

9 _
0z

Uo(t)% on Sg (6)

where z =1 (x,y, t) is the free surface elevation.
Using Bernoulli's equation, the dynamic condition is
9 _ ib

1 P,
—n-—=Vo-Vo-U,(t)-—-—2L 7
T L ¢-Vo—U,(t) x p O" sg (M

where p is the fluid density, g the gravitational
acceleration, and P, the ambient pressure which may
be a function of space and time.

Appropriate conditions are also necessary on the
far field boundaries. These may include walls,
absorbing boundaries, and/or radiation conditions.
Incident waves are introduced into the problem
domain by a wavemaker on the upstream boundary.
Depending on the water depth and wave frequencies,
we have used a piston, a paddle, a plunger, and the
equivalent of a pneumatic wavemaker. For the
calculations in this paper a piston type was used. In
addition, the initial values of the potential and free
surface elevation must be specified such that

0=0 t<0 in fluid domain
ni= B0 (8)

The primary difficulty associated with fully
nonlinear water wave calculations is the updating
and numerical stability of the free surface. As
shown in Beck et al. (1994), the kinematic and
dynamic free surface boundary conditions (6) and (7)
that are used to time step the free surface elevation
and potential may be put in the form:

M_90_ v _v).vn-u. (0N
i (V¢ v) Vn-U,(t) o on Sg (€))]
and

5_¢=ﬂgn_,;_v¢.v¢+vvv¢—% —Uo(t)%

ot ox
on Sg (10)
& 0 ; : o
where —=—+v-V is the time derivative
8t ot

following a generalized collocation point moving
along a prescribed path with a given velocity v. If
the prescribed velocity is set equal to the fluid
velocity (i.e. v = Ug(t)-i + V¢) then the
collocation points become material points and
follow the fluid particles. In this case, the Euler-
Lagrange method developed by Longuet-Higgins and
Cokelet (1976) is recovered and spatial derivatives
of the free surface elevation, m , are not required as
can be seen from equation (9). However, for
floating bodies at forward speed the collocation
points tend to pile up in the bow and stern regions
near the stagnation points. This difficulty can be
overcome by using generalized collocation points.
The collocation points can be fixed relative to the

ship in which case v= (0,0,88—?). This method

tends to have time stepping stability problems
because of the lack of downstream convection. The
collocation points can also be given a prescribed

path around the ship hull {v=(U{t),V(t),%1tlD that

avoids the pile up around the bow and stern and still
has the natural downstream convection.

RESULTS AND DISCUSSION
Nestegard (1994) administered two example
problems as part of a Det Norske Veritas survey of



nonlinear inviscid water wave codes. The first
problem was the simulation of free surface sloshing
in a two-dimensional wave tank. The second was the
simulation of wave diffraction by a vertical cylinder.
Results were obtained using various computational
methods for the solution of the Laplace equation
including the Desingularized Euler-Lagrange Time-
Domain Approach or DELTA method presented here,
the Boundary Integral Method (BIM), the Finite
Element Method (FEM), the Finite Difference
Method (FDM), the Finite Volume Method (FVM),
the Spectral Method (SM) and the Spectral/Splines
Method (SSM).

Fr rf loshi

In a two-dimensional tank, the free surface is given
an initial known elevation. The wave tank is 160
meters long and 70 meters deep. The initial free
surface elevation is,

2

(x,t=0)=121 ["]2 —(_7%)
Tseis 53) |
The free surface is released at time = 0 and allowed
to move under the influence of gravity. Figure 1
shows a series of free surface elevations at discrete
times as computed by the desingularized method.
This sequence of elevation plots illustrates the time
history of the nonlinear slosh modes. For the
survey, the free surface elevation and velocity vector
are sampled at t = 9.2 seconds and x = 60 meters.
Table 1 shows the results obtained by the nine
participants and the method they used computing the
sloshing problem. The names of the participants are
listed alphabetically and do not correlate to the
ordering in the table. The results obtained using the
DELTA method are clearly consistent with
predictions from other codes. The consistency of the
results show that fully nonlinear two-dimensional
problems can be accurately solved by a variety of
methods.

Wave Diffraction by a Vertical Cylinder

In a three-dimensional tank, incident waves are
diffracted by a vertical cylinder. The problem
parameters are, A/H=0.1, H/R=1.16, kR=1.324.
Where A is the incident wave amplitude, H is the
water depth, k is the wave number, and R is the
cylinder radius. The quantities reported in the survey
were the amplitude of the non-dimensional
horizontal force on the cylinder defined as, F/pgR*A
and the non-dimensional wave run-up on the front
(or incident wave side) of the cylinder defined as,
Nmax/A. Figure 2 shows the time histories of the
non-dimensional force and wave run-up. Two time
histories are overlaid here to illustrate the spatial
convergence of the calculations under grid
refinement. The constant amplitude of the
oscillations indicates temporal convergence. Figure
3 shows the free surface elevation near the cylinder
at the moment of maximum wave run-up. This figure
illustrates the significance of the run-up relative to
the amplitude of the incident wave. Table 2 shows
the results obtained by the six participants for this
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problem. Again, the names are listed alphabetically
and do not correlate to the ordering in the table. An
experimental result (Chakrabarti 1975) for the
horizontal force is also shown for comparison. The
table shows that there is more scatter in the results
indicating that more research is required for three-
dimensional problems. The DELTA method result is
close to the experiment and has a larger wave run-up
than the other reported computations. The large run-
up may be due to our treatment of the intersection of
the body and the free surface. Conventional panel
methods have collocation points at the center of the
panel and consequently do not have collocation
points on the intersection line. The DELTA method
uses simple sources instead of panels and the
collocation points can be placed directly on the
intersection line producing a more accurate
simulation of the body/free surface intersection.

CONCLUSIONS

Computations and comparisons with predictions
from other numerical methods have shown that the
desingularized method is a fast and accurate technique
to solve fully nonlinear water wave problems. The
desingularization allows the use of isolated Rankine
sources rather than the more complex panel
distributions. This leads to computationally fast
algorithms. In addition, the free surface and body
surface are not discretized with flat panels, thus
avoiding the difficulties associated with compound
curvature.
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-3.810 -2.240 -0.560

PARTICIPANTS METHOD

KJ. Bai Seoul National University FEM

R.F. Beck University of Michigan BIM

H.S. Choi Seoul National University BIM

A. Clement Ecole Centrale de Nantes BIM

R. Cointe Bassin d’Essais des Carénes BIM
& L. Boudet

C. Greated University of Edinburgh FDM

E. Mehlum SINTEF SI SSM

R. Eatock Taylor University of Oxford FEM

P.J. Zandbergen  University of Twente BIM

RESULTS

Surface Elevation Horizontal Vertical

n(m) velocity(m/s) velocity(m/s)

-3.803 -2.456 -0.363

-3.860 -2.480 -0.560

-3.815 -2.423 -0.577

-3.759 -2.411 -0.602

-3.820 -2.417 -0.580

-3.803 -2.417 -0.572

-3.720 -2.480 -0.690

-3.811 -2.411 -0.550 — U. of Mich.

Table 1: Survey results for the 2-D sloshing problem
(cf. Nestegird 1994)
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Figure 1: Free surface elevations for the 2-D
sloshing problem

Non-dimensional force and wave run-up
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Figure 2: Time histories of non-dimensional force
and wave run-up
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PARTICIPANTS METHOD
K.J. Bai Seoul National University FEM
R.F. Beck University of Michigan BIM
H.S. Choi Seoul National University BIM
P. Ferrant SIREHNA BIM
C.H. Kim Texas A&M University BIM
P.J. Zandbergen  University of Twente BIM
RESULTS

Horizontal Force Wave run-up

F/pgR™2A TNaa/A

2.53 1.83

2.82 1.79

3.10 1.80

2.88 1.82

245 1.58

2.95 2.23 — U. of Mich.

3.10 ---— — Experiment

Table 2: Survey results for the wave diffraction by a vertical

cylinder problem (cf. Nestegard 1994)
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Figure 3: Wave run-up on the incident wave
side of a vertical cylinder



