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ABSTRACT

An experimental investigation has been carried
out on the roll-up of a vortex sheet at the head of
a rectangular piston. This flow is of interest for
two reasons. One is that it has obvious practical
implications in the design of internal combustion
engines and reciprocating pumps etc. The other
is that it is an important fundamental flow which
can provide information as to the behaviour of
vortex sheets in closed systems. The choice of
a rectangular piston was made in the hope of
simplifying the system somewhat for comparison
with results for the roll-up of a vortex sheet in
front of a round piston which has been reported
in Allen & Chong (1993,1995). In the case of the
square piston it is hoped that the complicating ef-
fects of vortex stretching (at least at small times)
and the effects of complex axisymmetric images
will be avoided. The flow should be nominally
two-dimensional (planar) at least for some initial
time. This also makes the modeling and compu-
tation of the flow simpler. In this paper some
careful flow visualisation results are presented.

EXPERIMENTAL APPARATUS

In order to generate the nominally two dimen-
sional vortex an experimental apparatus was con-
structed that consisted of a 10 by 8 inch rectan-
gular piston moving through a duct filled with
water. A schematic of the experimental appara-
tus is shown in figure 1.

Fluid returns to the rear of the piston via a re-
turn circuit, similar to a closed-circuit wind tun-
nel. Honeycombs and turning vanes are included
in the circuit to ensure that the flow in the work-

ing section is straight and parallel. The piston is
driven by a stepper motor which drives a linear
traversing mechanism which, in turn, acts on a
hollow shaft connected to the piston. The drive
mechanism is also connected to a sled, running
on linear bearings, which carries a CCD camera.
The camera moves with the piston thus giving
a frame of reference in which the piston appears
stationary. The piston is fitted with dye injec-
tors around its outer edge. The dye injection
tubes run through the hollow drive shaft to the
dye reservoirs. The flow is visualised by inject-
ing fluoriscein dye through 1mm holes in the pis-
ton face, close to the piston/wall junction. The
vortex cross-section is illuminated with a colli-
mated, parallel laser sheet which originates from
the downstream end of the duct.

RESULTS AND DISCUSSION

Dimensional analysis suggests that the position
of a vortex filament on the sheet, z = z + iy as
defined in figure 2, is given by

z = f{Uy, 1, Ty D)

where U, is the piston velocity, ¢ is the time from
the start of the motion, v is the kinematic viscos-
ity, T’ is the amount of circulation on the sheet
between the core and the point z and D is the
length scale of the apparatus.

Applying Buckingham’s theorem we have the
following functional relationship

2 _ (_LEEL)
Uyt = Y\ T 1 Ut

Replacing U,t with L, where L, is the distance
the wall has moved from rest the above equation
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Figure 2: Definition of spiral parameters
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The Reynolds number for this experiment,
L,U,/v = Re, develops during the experiment.
At early stages of development if the size of
the spiral is much smaller than the experimen-
tal length scale of the apparatus then we may be
able to neglect D as a dependant variable. Also
if the Reynolds number is sufficiently high it may
be possible to neglect the effect of viscosity. This
leads to a functional relation involving only two
non-dimensional groups.

This equation predicts that the sheet scales in a
dimensionally similar fashion. In order to check
this similarity solution we need to track a fila-
ment on the sheet. The only filament which we
can track reliably using flow visualization is the
core of the spiral, z, = =, + iy,, where I' and
hence I'/(LyU,) is equal zero.

The experiment consisted of running the piston
at three different constant velocities, 7.195, 12.51
and 19.00 mm/s. Results from these experiments
are shown below. Figures 3 and 4 show typical
flow visualisation photographs of the vortex for
the slowest and fastest cases respectively. The be-
haviour for all three cases is broadly similar with
the spiral roll-up growing with time. In order to
examine the structure of the spirals more closely
measurements of the trajectory of the core have
been made from a video of the developing spiral.

Figure 5 shows the non-dimensional core co-
ordinates plotted versus Reynolds number. If the
shape of the spiral is independent of Reynolds
number and D then all cases should collapse onto
a single horizontal line. The results are very inter-
esting. There does appear to be some collapse for
the y, co-ordinate suggesting a region where both
Reynolds number and D are unimportant. The
z, co-ordinate shows broadly similar behaviour
(in terms of the shape of the graph) however the
region where the graph could be said to be inde-
pendent of Reynolds number and D is smaller.

The peel-off at large Reynolds numbers can then
be seen to be due to the effect of the length scale
of the apparatus i.e. when z,/D and y,/D be-
come significant.
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Figure 3: Sequence of photos for U, = 7.195mm/sec

Lu/D =1.122

Figure 4: Sequence of photos for U, = 19.00mm/sec
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Figure 7: Co-ordinates of centre of spiral non-dimensionalised by L., and D

The low Reynolds number region of both graphs
corresponds to the development when the spiral
is small and it is interesting to note that in this
region it appears that z,/L,, and y,/L,, are only
functions of Reynolds number only since for the
different piston speeds all the data collapses onto
a single curve. This is not surprising since it sug-
gests that the length scale of the apparatus is not
important when the spiral is small and viscous
forces dominate. At low Reynolds numbers we
would expect the location of the core of the spiral
to be a function of viscosity and time. Expressing
this as a non-dimensiomal equation we have

Zo

& y1j2/(t1/2Up) — Re~1/3

Figure 6 shows plots of y,/L, and z,/L, vs
v1/3/(t}/2U,). These plots show the apprximate
linear relationship between z,/L,, and Re~!/? at
low Reynolds numbers.

The peel-off at large Reynolds numbers can then
be attributed to the effect of the length scale of
the apparatus i.e. when z,/D and y,/D become
significant. In order to examine this point further
figure 7 shows the z, and y, co-ordinates non-
dimensionalised by L,, vs the same co-ordinate
non-dimensionalised by D. From these plots it
can be seen that the peel-offs shown on figure 5
for the z, co-ordinate are now clustered around
an approximately constant value of z,/D. For
the y, co-ordinate there is little or no obvious
cluster of points at a constant y,/D value that
is consistent with the peel-off shown in figure 5.
It appears that the y, co-ordinate is more depen-
dent on Reynolds number than the z, co-ordinate
as the value of z,/D increases.

CONCLUSIONS

The trajectory of the vortex core can be classi-
fied into three zones. The first is during its early
development when Reynolds number is small
and viscous forces are significant. In this re-
gion z,/L, ~ 0.5Re"/2, A second relatively
brief stage when the trajectory is independant
of Reynolds number but the structure is small
enough to be also independant of external length
scales. In this region the structure can be clas-
sified as “self-similar” , as discussed in Pullin
(1979), and a final stage where the external length
scales operate in a complex fashion to effect the
core trajectory. It should also be noted that
three-dimensional effects will occur as the size of
the spiral becomes large in comparison to the ap-
paratus length-scale.
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