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Abstract

In this paper, three-dimentional vibration of the sucker
rod string, tubing and liquid column in the sucker rod
pumping system has been comprehensively studied. A
new set of partial differential equations describing the
movement regularity of sucker rod pumping systems
was obtained and numerical solutions of the partial
differential equations were found using finite difference
technique in a manner of linear analysis. This mathe-
matical model was used to evaluate performance of the
sucker rod pumps (pumping rate as a function, number
of strokes, stroke length, rod length, plunger to cylin-
der diameter ratio ete.). The results have shown that
the developed model is much superior over the exist-
ing one-dimentional or two-dimentional models. This
model can be used as a powerful tool for predicting the
dynamic parameters of a sucker rod pumping system
and well site diagnosis.

Introducton

Sucker rod pumping systems are used in approximately
T0% of artificially lifted wells. In view of this wide ap-
plication, it behooves the industry to have an accurate
understanding of the sucker rod pumping process. Re-
cently there has been a substantial effort to develop
sucker rod pumping models that can be solved with
the aid of a computer[1]-[3]. These efforts, Lowever,
have been restricted solely to the analysis of the dy-
namics of the sucker rod string, i.c. one-dimensional
vibration. As such, these model ignore the dynamics
of the fluid and tubing columns as well as the physical
properties of the fluid.

The study of Doty and Schmidt[4] overcame one of
these shortcomings by including the dynamics of the
fluid as well as the rod. So it is possible to analyze
the effects of fluid physical properties on a sucker rod
pumping system. This model lLas been called two-
dimensional vibration which is more accurate than one-
dimensional vibration model. In the above study, the
following assumption is made: tubing is anchored. In
fact, there are many sucker rod pumping installations
in which tubing is not anchored.

In this paper, three-dimensional vibration of the sucler
rod string, tubing and liquid colunn in the sucker rod
pumping system has been comprehensively studied. The
purpose of current study is to illustrate the effect of
Auid properties and vibration of tubing on a sucker
rod pumping installation. It is hoped that this study

and techniques which may evolve from it, will prove
to be the tool needed by industry to obtain the most
efficient use of rod pumping equipment.

Nomenclature

Audistance between 0, and Os in Fig.2 (m)
Ac:rod coupling area (m?)

Ap:tubing external area (m?)

Ap:plunger area (m?)

A,:rod area (m?)

Ag:tubing internal area (m?)

B:distance between O3 and O, in Fig.2 (m)
br,byricoefficients defined by eqn.(13) (NS/m?)
bybys:coefficients defined by eqn.(16) (NS/m?)
C:distance between Oy and O in Fig.2 (m)
Cy:fluid friction factor

Cy:rod coupling friction factor

Cy:sound speed in the liquid column (m/s)
Crisound speed in the rod (m/s)

Ci:sound speed in the tubing (m/s)
D.:coupling diameter (m)

Dy :tubing external diameter (m)

D,:plunger diameter (m)

D, :rod diameter (m)

D,:tubing internal diameter (m)

E;:modulus of elasticity for liquid column (n/m?)
E,:modulus of elasticity for rod (n/m?)
Ey:modulus of elasticity for tubing (n/m?)
Fy:viscous force per unit length of liquid column (n/m)
Fiviscous force per unit length of rod (1n/m)
Fyviscous force per unit length of tubing (n/m)
g:gravitational constant (m/s?)

J:distance between Oy and O, in Fig.2 (m)
L:distance between Oy and O, in Fig.2 (m)
L:length of all of sucker rod string (m)
Llength of one sucker rod string (m)

N:crank angular speed (1/min)

PR:ratio of stroke

P:tubing pressure at pumping cavity (n/m?)
Py:fluid pressure (n/m?)

Po:tubing head pressure (n/m?)

Py:casing pressure at plunger level (n/m?)
@,:rod tension (n)

Q::tubing tension (n)

Iticrank length {(m)

R.:Reynolds number for the Huid
R,:Reynolds number for the rod and the tubing
S:polished-rod stroke (m)

t:time (s)




Vy:fluid velocity (m/s)

V,:rod velocity (m/s)

Vi:tubing velocity (m/s)

X:depth below polished rod (m)

Z;: transformation defined by eqns.(20)

n:liquid dynamic viscosity (ns/m)

Astroke lose (m)

p:damping coefficient between plunger and cylinder
(ns/m)

pyfluid density (kg/m®)

prirod density (kg/m?)

petubing density (kg/m?)

wicrank angular speed (r/s)

:crank angle (r)

a,f,e€,¢,1:angles in Fig.2 (r)

Formulation of the Problem

Fig.1 shows a sucker rod pumping system. To simplify

the analysis the following assumptions are made:

(a) The conventional pumping unit has been used. The
prime mover has no slip, the crank angular speed
w is a constant.

(b) Fluid column contains no gas, and p ¢, Po, Py, n are
constants.

(¢) The valve resistance is ignored, and p is constant.

The equation of the motion of the rod string has been
yvielded according the theory of vertical vibration of a
rod:
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The second equation governing the motion of the rod
relates the amount of rod deformation to the tention
in the rods. Here Hooke’s law is taken to obtain:
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It is also assumed that the rod has a constant modulus

of elasticity and that Hooke's law applies.

Similarly, the first-order partial differential equations

which describe the motion of the tubing are:
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According to the assumption (b), the liquid column
could be known as an elastic object which can not be
pulled and the equations of the motion of it ave:
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In fact, the liquid density, p; changes very little when
the pressure changes, so it is considered as constant.
Thus, the motion of liquid is linearizated. Notice that
the liquid pressure Py is always positive.

The function, F, of eqn.(1) is the force per unit length
of the rod arising from the viscous force of the fluid
acting on the rod surface. The equation for F, is [4]:
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F. = 0.5p;V¢|Vy|nD.C1 + 0.5p;Vy|Vy|(Ae — A,)C/1 )
(7
where, C; and C, are friction factors. Experiments
were performed by Valeev and Repin to determine the
dimentionless friction factors [2]. For the sucker rod
they obtained the equations for friction factors as:
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where, the Reynolds number R, and R! are associated
with the liquid and rod velocities. They are defined as:
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So, eqn.(7) can be written as:
Bo= bV =5,V (12)

where:
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Boundary Conditions

1. Swrface Boundary Conditions (X=0)

Fig.2 shows a convetional pumping unit. The motion of
the polished rod is determined by the geometry of the
surface pumping unit and the torque-speed character-
istics of its prime mover, By determining the motion of
the polished rod, one can formulate a swface boundary
condition of the sucker rod string as:

sina
sing

Let the value of w be positive when the crank rotates
clockwise, and

Vi(0,1) = —%Rw (19)



8 = wt (20)

where, the crank angular speed w is constant according
to the assumption (a).

Eqn.(19) is obtaind from the general solution of the
"four-bar” linkage problem and can be used to describe
the kinematics of any modern pumping unit. Notice

a=¢—0+8+49 (21)
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Notice, when the crank rotates anticlockwise, the neg-
ative sign of eqn.(19) should cancel.
The surface boundary condition of the tubing is:

(0,8) =0 (27)

Whereas the surface boundary condition of the liquid
column is:

P(0,t) = Py (28)

2. Downhole Boundary Conditions (X=L)

Fig.3 shows a downhole pump. One can get three equi-
libriwm equations with the theory of mechanics.

(a) The equilibrium equation of the pumping plunger
is:

Qr(L,t)+ PA, — Pr(L,t)(4, — A,)

—p[Vi(L,t) = V(L )] =0 (29)
(b) The equilibrium equation of the eylinder is:
Qt(L~ ” = P-”lp = PJ(L-I‘)(-‘&# - -"1.0) + -’th]
—pu[Vi(L.t) = W(L,t)] =0 (30)
(c) The equilibriun equation of the How is:
(Ao = ANVHL, t) = (4, = 4,)V(L,1)
+HA, — A)VHU(L, 1) (31)

For different situations of valves, equs.(29) through
(31) will be different.

Initial Conditions

Let t he zero, when the polish rod is located at tle
lowest point and the traveling valve is open, i.e. P=P;.
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The initial conditions of eqns.(1) through (6) are given
by:

V(X,00 = 0
WX,0) = 0
Vi(X,0) = 0
Q-(X, 0) = Ar[Prg(L_X)_PIgL_PU] (32)
QuX,0) = pg(An— A)(L - X)
+ (prgL + Po)A: — Ay Py
Pi(X,0) = pgX + Py

If the preceding initial conditions are used, then the
computer program need to run only for three pumping
cycles to damp out effectivelly the start-up transients.

Solutions and Analyses

To obtain the numerical solution of eqns.(1) through
(6), the finite difference method was used.

To simplify the analysis, we assume that the operation
of sucker rod pumping systems is normal and simple
rod string is used.

Operating the computer program, inputing the known
data of the sucker rod pumping systems, one can get
the values of Q,,Q,, P, Vo Vi, Vy at any X, then draw
the dynamographs of any position. The results can be
called predicting of systems.

Fig.4 shows the effects of the dynamic viscosity of the
liquid column. Here u=0, N=-12, L=1400, P,=0 and
R=1.2.

As the value of 77 increases, the corresponding dynamo-
graph will be "fat”. This means that in a case where
7 is large, the work done by the pumping unit is also
larger.

One interesting effect of w is shown in Fig.5. Here
#=0, n=0.025, L=1400, Py=500000 and R=1.2. Simi-
lar regularity is depicted by Doty and Schmidt[4], but
obviously, the results are more accurate. For eompar-
ing the results of three mathematical models, the com-
puter programs for one-dimensional vibration model
and two-dimensional vibration model were used. Fig.6
shows the results obtained from the three mathemati-
cal models. Here (a), (b) and (c) represent:

three-dimensional vibration model of the sucker rod
string, tubing and liquid colwmn;

two-dimensional vibration model of the sucker rod string
and liquid column;

one-dimensional vibration model of the sucker rod string
respectively.

From curve(b) one can find that the time when stand-
ing valve is open, shifts to an earlier. Because in (b)
it is assumed that the tubing is anchored. Curve(b),
however, is closer to curve(a) than curve(c), because
the vibration of liquid colummn in (¢) is ignored. This
becomes specially important for analysing performance
of rod pumps lifting heavy oils from the well.

Conclusion

The new mathematical model of three-dimensional ana-
lysing of the vibration of sucker rod string, tubing and
liquid column provides useful information on the design
and operation of sucker pumping installations. The re-
sults indicate that the new model is an improvement
over the existing one-dimensional and two-dimensional
models. The new model can he used as a powerful tool




for predicting the behavior of sucker rod pumping sys-
tems. It is also a potential tool for well site diagnosis.
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