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Abstract

The third order dynamical model (cubic non-linear
Schrodinger equation) describing the evolution of a narrow
banded surface gravity wave distribution is extended to the
case where wind input, breaking dissipation, and turbulent
diffusion are present. The modeling of real ocean effects is
self-consistent and is based on the Kitaigorodskii-Toba
energy spectrum and Kahma' law of wind input. One
consequence of this new evolution equation is described, the
existence of soliton wave groups whose steepness envelope
has the familiar sech form, and is dependent only on the
wind speed. The number of waves within these groups is in
good agreement with ocean observations of energetic wave

groups.

Notation

k,o,c wave number, frequency, velocity
X, Z - kx, kz dimensionless horizontal coordinates
t— ot dimensionless time

X=x-12t horizontal moving coordinate
A—kA dimensionless wave amplitude

¢ — k2¢/0  dimensionless wave potential

PP 8 pressure on surface, density, gravity
U, ux wind speed, friction velocity

B wind-wave growth rate

) dissipation rate coefficient

D diffusion damping coefficient

D wave frequency spectrum

Q dimensionless frequency

K =Ulc, and p* = usfc.

Introduction

The observed self-similar sea spectra is narrow or
quasi-monochromatic (the half-width is 0.15 of the peak
frequency), and the wave slopes are small, O(10-1). These
facts alone suggest that the energetic sea might be treated as a
weakly non-linear, narrow-banded, dynamical system. The
sea spectra is known to be controlled by the wind and by the
balance between wind energy input and dissipation. Here we
undertake the modelling of this locally non-conservative
system by an extension of the nonlinear evolution equation
of the cubic nonlinear Schrodinger type, first derived for
weakly nonlinear dissipative systems by Benny and Newell
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(1967), and first applied to conservative water wave
dynamics by Zakharov (1968).

In accord with field measurements, we take the wind
input to be linear and the breaking dissipation to be cubic in
the wave amplitude, and each term is much smaller (by a
factor O(10-2) than the inertial terms in the Zakharov
formulation. Nevertheless, over sufficiently long times,
O(10* wave periods), the non-conservative terms dominate
the behavior of the system. Then, entirely new phenomena
appear in comparison to the conservative system. These are:
(i) the appearance of propagating wave groups of permanent
form (solitons) whose characteristics are entirely determined
by the wind speed; and (ii) the ultimate appearance of 3 wave
resonant side-band systems undergoing modulated
interactions about an attractor dependent on the wind speed.
For lack of space, we discuss only the first of these new
phenomena here. We show that there is very good agreement
between the predicted and observed wave groupings.

The shape of the energetic wave energy spectrum is
crucial for modeling, and we rely on the Kitaigorodskii-Toba
(K-T) spectrum, Kitaigorodskii (1962) and Toba (1973):

D(w) = oy gux ol ok = 0.02 )

which is widely accepted to model the energetic wind-wave
spectra for @, < ® < 3w,,. For much shorter gravity waves,
@ . 3, as first suggested by Phillips (1958). The choice of
the wind input model cannot be made independent of the
choice of spectral laws, as we discuss subsequently, and the
dissipation must in turn match the wind input. Rather
remarkably, then, the modeling of all real effects eventually
hinges on (1).
he Evolution ion

For a weakly nonlinear quasi-monochromatic wave
with a central wavenumber k and frequency , the evolution

of its dynamics for the non-dimensionalized complex wave



amplitude, A(x,z,t), is described by the following equation
of generalized Ginzburg-Landau type:

At+%Ax+ié-(A“— 2Am)+i%AlAF
+1i A(¢10)x
= (A - 6Acz) - L (WAL - 6APAY)

=R(A) @

where the first line represents dominant inertial effects, and
when set equal to zero corresponds to the cubic-Schrodinger
formulation of Benny and Newell (1967) and Zakharov
(1968); the second line represents the effect of an underlying
current introduced by Davey and Stewartson (1974); the
third line represents quartic inertial terms introduced by
Roskes (1977) and Dysthe (1979). The generalized terms on
the fourth line represents the effects of wind input (pumping)
and dissipation (damping), which are introduced below. All
of the conservative terms on the left-hand-side of (2) may be
derived by a multiple scale analysis of the surface gravity
wave problem.

The behavior of conservative systems governed by (2)
in the absence of R(A) has been studied extensively. Soliton
wave group solutions of the cubic conservative system exist
and were shown experimentally by Yuen and Lake (1975).
Other wave groups have been shown to self-modulate,
leading to a long period recurrence. The fourth order terms
introduce asymmetries in the wave group shapes (steepening
of the leading face of the groups) and tend to unbalance the
distribution of energy in the resonant side-bands, in favor of
the low frequency band (downshifting). The existence of
resonant side-band systems, first explored by Benjamin and
Feir (1967), arises from the conservative form of (2),
whereby they may be treated. Despite the great success of
the conservative weakly nonlinear formulation, it fails in
applications to the wind-driven sea; the reason for this is that
the non-conservative terms, represented by R(A), dominate
the eventual behavior of wave groups, despite the smallness

of the R(A) terms. This is very fortunate as it results in the
prediction here of nonlinear waves dependent on the wind

speed and wave age, just as observed in practice.

Previous attempts to study the effects of wind input
and/or breaking dissipation on (2) have concentrated on
other phenomena than are studied here. These include the
introduction of nonlinear breaking dissipation including an
onset wave slope, to show downshifting under the influence
of breaking, Trulsen and Dysthe (1990), and an extension
to include the effects of wind input, Trulsen and Dysthe
(1992). In the latter work, a suppression of modulational
instability was found at higher wind speeds. Down-shifting
was also studied by Hara and Mei (1991) under the influence
of wind input and of linear damping. In all of these works
the wind was modeled according to the formulation of Plant
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(1982), which is intended for input to shorter waves, and is
not applicable to the energetic spectrum; nor does the
modeling in these past works result in the generation of
spectral shapes as have been measured in the ocean.

Wind Input to Waves

The wind induced pressure on the sea surface, p,,, can
be safely assumed proportional to the wave slope, including
terms in and out of phase with the wave elevation, Phillips
(1963):

pwlp = -ic? (o +1if)dn/ox 3)

It is generally believed now that the B part of p,, is directly
responsible for the wind energy input to waves and it has
been measured both in small wavetanks and in the open sea;
the o term has a very small effect on the wave phase and will
hereafter be neglected. The latest ocean measurements,
Hasselmann et al (1991), suggests the following law for the
nondimensional growth rate of individual waves:

Bi=25p/p(u-1) l<p<3

@

where L = U/c. This growth rate is particularly relevant for
the larger energetic waves. It is also consistent with that part
of the physics implied by Miles (1957) theory of wave
generation by wind which requires the input to disappear
when the wind speed and wave speed are equal (L = 1).

It may also be asked what is the effective growth rate,
B, for the entire energetic spectrum. It has been shown,
Kahma (1981), that in the case of K-T spectral shape, the
effective growth rate may be calculated from a knowledge of
the spectral constants and of the wind friction coefficient. He
found:

B = Kps, K =6.39 x 103 )

where the inverse wave age [x = ux/C,, and ¢, refers to
values at the spectral peak; it needs to be noted that for small,
high frequency waves, (i« > 0.1), a quadratic law, B ~ ps2
has been observed, Plant (1982), consistent with the Phillips
(1958) short wave equilibrium spectrum.

In our own modeling we favor (5), since it leads to a
self-consistent model, provided that the K-T spectral shape
applies in the energetic wave range, as we assume here.

The wind pressure (3) when introduced into the
mathematical derivation of (2) results in a linear term on the
r-h-s, B/2 A.

Dissipation of Wind Wav
The turbulent dissipation which accompanies the
strong mixing in the breaking wave is responsible for

irreversible energy losses in energetic wind wave systems. A



detailed theory of breaking losses is not available, nor is an
adequate understanding of the cause and mechanism
accompanying energetic breaking, see Tulin and Li (1992).
In view of the disparity of energy in wind and the largest
waves, it seems likely that the breaking mechanism and its
details do not depend directly on the wind, but can depend
only on the wave steepness, |Al. It is necessary in an
equilibrium sea that wind input and breaking dissipation
match when integrated over the entire spectrum. If the
dissipation rate (E-1dE/dt) is assumed ~ 8 |A"-D), then this
matching allows a determination of both the exponent, n,
and of dissipation rate constant, 8. In the case of a Stokes
wave, then, assuming matching of breaking and wind input
and using (5):

3IARED = B = K px ©

The steepness of the waves in the K-T spectra is simply
related to [ according to a law given explicit form by Toba

(1972):

|A? = n3 B2 px (B = 0.062) @)
As aresult,
n=2: 8 = K/n3B2 = 0.0536. (8)

It may be noted that a scaling of the breaking dissipation
with |AP(®-1) has been proposed before by various authors:
Hasselmann (1974), n = 1; Phillips (1985), n = 3; Plant
(1986), n = 2; Donelan and Pierson (1987). We have found
above n = 2 necessary for self-consistency with both the K-
T spectrum, and Kahma's law of wind input, which follows
from the K-T spectrum.

The evolution equation which now results from
previous considerations is (we omit the fourth order terms,
as non-essential):

At+;—Ax+i;—(Auw2Au)+i%A}AF

=L _1_5
LBA +D Ac-L5]APA -

It is also useful to express this in a coordinate system
moving with the group velocity (1/2, in non-dimensional
terms),

A,+i;—(AXX—2Au)+i;—A1A|2

=9 -Ls
2BA+DAXX + |APA (10)

where we have omitted the effects of underlying current, as
we shall not deal with them in the following.

Soliton Wave Groups

It was first observed at sea by Donelan, Longuet-Higgins,
and Turner (1972) that clearly discernable energetic wave
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groups are present, and this was later confirmed by Thorpe
and Humphries (1980), Su (1986), and Holthuisjen and
Herbers (1986). Controversy exists as to whether these are
the consequence of statistical properties of a stochastic linear
wave system, or whether they are a product of non-linear
wave dynamics; Su (1986) conducted a detailed analysis of
wave groups measured in the Gulf of Mexico and compared
with nonlinear resonant wave group characteristics, and
strongly argued in favor of nonlinear wave group formation.
However, a theory of wave group formation based on wind
generation has not heretofore been given.

The model evolution equation (10) has a soliton wave
group solution given by

A =a [sech(bX)]! +10 g-i021 (11

where b is very closely approximated by b = V2 a, so that

1A

a2

a sech(¥2ax)

il

(12)
and

2@ = (L aBYpsx = 32 |Afg,

(13)

The number of waves within a spatial envelope, N,
thus depends only on the steepness of the waves within the
envelope and this allows a direct comparison with ocean data
(using Su's (1986) data analysis). We find, taking a_,, = .2:

Stokes Su (measured)
Amean .14 .14
N, " 3

Note that the amplitude of the soliton and therefore the size
of the wave group is, (13), entirely determined by the wave
age, ILx-1, without any disposable parameters. While the
good agreement with Su's data is highly suggestive, the
soliton (12) exists in the absence of background waves,
unlike those wave groups observed at sea.

Summary and Conclusions.

(1). The effect of wind, breaking, and turbulent
diffusion on the generation and propagation of narrow
banded surface wave groups has been modeled, and an
appropriate evolution equation derived as a modification of
the well-known conservative evolution equation of the cubic-
nonlinear Schrodinger type.

(2). The modeling of real effects is self-consistent and
hinges on the validity of the Kitaigorodskii-Toba spectral
law for energetic waves. This law implies the Kahma linear
law for wind energy input, and the later implies an energy
dissipation rate depending on the fourth power of the wave
steepness. A self-consistent theory results in which all the
constants are known from ocean data.

(3). A general development suggests the existence of



turbulent diffusion of the wave groups in the presence of
breaking, but the associated diffusion coefficient is not
known at this time. Although not discussed here, it is worth
noting that, if large enough, diffusion results in a
quantitative change in the behavior of the wind driven
dynamical system.

(4). A soliton wave group of the classical sech form
exists as a solution of the wind-driven evolution equation. In
this solution, the width of the soliton (or number of waves in
the group) depends only on the steepness amplitude of the
wave group, which in turn depends only on the wave age
(no disposable constant). Good agreement between predicted
and observed wave group size is found.

(5). In a further development of the work reported
here, the long term evolution of narrow banded distributions
has been studied using this wind-driven evolution equation
and modulation has found about a wind dependent attractor.
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