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Abstract

The steady axisymmetric Navier-Stokes equations for the
flow in a cylindrical container and in an annulus have been
solved by the continuation method, being a standard tool of
numerical methods for bifurcation problems, By alteration of
the boundary condition for vorticity at the axis, the transi-
tion of the flow structure, including the separation bubble,
being present in a conventional container, to that in an
annulus with an infinitesimal inner radius was proceeded. By
further continuation in the ratio between inner and outer
radii the flow pattern in the annulus was computed. It was
shown that even for very high values of this ratio a recircu-
lation region occurred at the inner wall of the annulus. The
transition to a nonsteady motion through supercritical Hopf
bifurcation was studied by following the time development
of a small axisymmetric disturbance introduced to the full or
linearized system of equations.

1. Introduction

In recent years, great attention has been attracted to stu-
dies of the vortex breakdown phenomenon in a container
with rotating endwall. The axisymmetric steady and oscillat-
ing flow in such a geometry was tested experimentally and
computed numerically; good agreement was found between
the results (see, e.g. Escudier 1984, Lugt and Abboud 1987,
Lopez 1990, Lopez and Perry 1991, Daube 1991, Tsitverblit
1992). By applying the method of continuation to solve the
steady Navier-Stokes equations in a stream function-vorticity
formulation Tsitverblit (1992) was able to compute the
unstable steady solution and to show that the transition to
oscillating flow occurred through supercritical Hopf bifurca-
tion.

It might be interesting, therefore, to compute the flow in
the same confined geometry, but by applying a different
boundary condition for the azimuthal vorticity at the axis,
which actually corresponded 1o the axis replacement by a
solid rod of an infinitesimal diameter. In this configuration
of a container, the numerical boundary condition for vorti-
city & at the axis, r = 0, expressed through stream function 3,
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may be presented in the form & =71 0.5 I By variation of

the continuation parameter 7 from 0 to | one can follow the
flow structure modification continuously from a conventional
container with a "fluid" axis to a container with "solid" axis.
In such a configuration of an annulus type, the influence of
viscosity should be enhanced in the region of the separation
bubble and therefore could be better assessed. From theoreti-
cal considerations, the behavior of inviscid swirled flow in
an annulus and in a conventional container might be differ-
ent. In particular, Keller and Egli (1983) showed that when
the approaching supercritical flow is a potential vortex, a
transition to another supercritical flow with a cavity of finite
size was expected.

By further applving continuation to the ratio between the
internal and the external radii of the annulus, solution can be
obtained in the whole range from 0 to |, or from a container
with a "solid" axis to a straight channel.

The detailed results describing the flow patterns, the
region of vortex breakdown existence , the axisymmetrical
stability margin and the disturbance evolution as a function
of time are presented for a conventional container and for an
annulus while its radii ratio is varied.

2. Description of numerical approach and results.
2.1 Mathematical formulation
In the present study the same mathematical and numeri-
cal formulation as described in Tsitverblit (1992) was
adopted. For the geometry of a closed container of the
annulus type illustrated in Fig. | the vorticity-stream func-
tion formulation of the steady axisymmetric Navier-Stokes
equations in cylindrical coordinates (r,0,z) with appropriate
boundary conditions was considered.
The equations were rendered nondimensionally using the

following scales:

lengthscale d for the radial r-coordinate, where d is the
width of the channel;

lengthscale H for the axial z-coordinate, where H is the
height of the channel;

velocity scale v/d, where v is the kinematic viscosity.
The choice of the vertical lengthscale was dictated by the
need to have aspect ratio 7 = d/H as an explicit parameter in
the equation so that continuation in it, if necessary, would be
. Qdre
possible. The Reynolds number was defined as Re = ———
where 1 is the angular velocity of the rotating endwall and
was the external radius of an annulus. This definition
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vields the usual definition of Reynolds number for a
conventional container Re = S
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Fig. | Coordinate system for annulus.




To allow for the variable grid sizes, the following
stretching functions were incorporated into governing equa-
tions following Tsitverblit (1992): r = x - a-sin(27x) and z =
y - bsin(2my), where r and z ranged from O to | and 2 and b
were chosen from the following intervals: a € |0;0.13], b €
[0;0.15].

After discretization the steady axisymmetric Navier-
Stokes equations with boundary conditions constitute a
system of nonlinear algebraic equations which can be written
as f(x,Re,y,R,7) = 0 where Reynolds number Re, aspect
ratio v, radii ratio R, and continuation parameter 7, incorpo-
rated in the boundary condition for vorticity at inner wall
are variable parameters and x stands for a vector of unk-
nowns of finite dimension. In most of the runs, Reynolds
number served as a continuation parameter upon which a
steady solution was continued from zero at Re = 0 (for more
details see Tsitverblit 1992). The stability of the computed
steady solutions and the transition to axisymmetric developed
oscillating flow were simulated by introduction of initial dis-

turbances into the equation M[ax] + f(x,Re,v,R,7} = 0

where M is the matrix reflecting the fact that the conserva-
tion equation did not depend explicitly on time. The linear-

ized form of this equations can be written as M[ég:] +
x"-fy (x4, Re,1,R,7) = 0 where fy(xo.Re,v,R,7) is the Jaco-
bnn matrix , x” is the deflection from the steady solution x”
= X - X, and X, is the steady solution for the chosen set of
parameters Re, 7, R and 7. The implicit method was used to
solve these equations in both linear and nonlinear cases.

The main bulk of computation was performed for the
container with an aspect = 2 and stretching parameters: a =
0.117, b =0.128. Three modifications of the geometry of the
container were considered: a) a conventional container, b) a
container with a solid rod of an infinitesimal diameter placed
at the container axis, c¢) an annulus geometry. The only
difference between cases a) and b) was the boundary condi-
tion for vorticity at the axis. As it was mentioned above the
continuation parameter 1 was varied from 0 to 1, thus allow-
ing to transfer the flow conditions continuously from case a)
(a conventional container) to case b) (container with a solid
rod at the axis).

The transition from case b) to case c) (an annulus
geometry) was achieved by further application of continua-
tion to the ratio R between the internal and the external
radii of the annulus. By such a procedure the solution could
be obtained in the whole range of R from 0 to 1. When this
ratio is very close to zero (for the results presentation we
choose a value of 0.01) the flow pattern in the annulus
should be very close to that of the case b). It was verified
that for the fixed selected values of r and R the same results
could be obtained by continuation in Reynolds number Re
and in the computations all these approaches were used. Most
of the calculations were conducted on a grid 25x25 which
gives very reasonable results when stretching was introduced
in the discretizied equations in the same way as it was done
in Tsitverblit (1992) and the optimal stretching parameters
were chosen in accordance with his careful calculations.
Verification of the numerical scheme performance was done
on the grid 53x53.

2.2 The flow structure in conventional container, in container
with an axis replaced by solid rod and in annulus with very
small radii ratio R = 0,01

2.2.1 Steady flow and interval of vortex breakdown exis-
tence.

The most significant result which follows from the com-
parative analysis of these three cases at the same value of Re
is a very close similarity of the flow pattern for all these
modifications in both regions: outer flow region and the
region of close vicinity of the axis where vortex breakdown
occurs. To illustrate this the streamlines of the secondary
flow in the container computed at Re = 2000 are shown in
Fig. 2. 1t is worth to note that the instant of the vortex
breakdown appearance depends slightly on the boundary
condition at the axis as it can be seen from the Table |.

Using the continuation in 7, it was also checked that the
transition from the "fluid" axis (conventional container) to
"solid" axis was very smooth and the modification of the sep-
aration bubble during this transition was unnoticeable. It was
conjectured by previous authors (cf. Lopez 1990) that
although the flow in the container as a whole was viscous,
the emergence of the separation bubbles and their flow
structure are essentially phenomena of inviscid nature. It can
be seen from the Table | that introduction of viscous effects
directly to the region of vortex breakdown expands only
slightly the range of existence.

TABLE I Range of vortex breakdown existence and flow stability margin,

Conventional Annulus

container r, =03 ry =0.501 ry=1 Iy =5
Re, i 1460-1470 1410-1420 1460-1470 1520-1540 2900-2920
Reé.... 3140-3160 3260-3280 3320-3340 4250-4300 > 200000
Re,. 2530-2550 2530-2550 2530-2550 2100-2125 2880-2900

Fig. 2 Streamline contours for Re = 2000 in a container: a) conventional,

an annulus with: ¢) r, = 0.501,

d)l’n= l.e) r,,=5_
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b) with a "solid" axis and in




2.2.2 Transition to unsteady flow: instability and pulsating

flow in a container.

Daube (1991) showed that the flow in the vicinity of
Reqy behaved according to the assumption that transition
occurred through supercritical Hopf bifurcation which was
also confirmed by the detailed numerical computation per-
formed by Tsitverblit (1992). This assumption allows one to
use the linearized system of equations to find the stability
margin for small axisymmetric disturbances. In the bottom
line of Table 1 the results of stability margin calculation are
presented. There is practically no influence on the stability
of the boundary condition at the container axis. It is impor-
tant to note that in the frame of this work only instability to
axisymmetrical disturbances can be assessed. Fortunately, the
experiments of Escudier(1984) showed that in the range of
parameters where the vortex breakdown in a container was
usually investigated there was only a very short interval at
relatively high values of aspect ratio 4 = 3.1-3.5 where a
clear deflection from axial symmetry occurred and the first
sign of non-steady motion was according to Escudier "a pre-
cession of the lower breakdown structure”. One can speculate
that in this range of parameters the instability starts to dev-
elop inside the recirculation zone of the flow i.e. the separa-
tion bubble. The very existence of a region of an unsteady
vortex breakdown in a container controlled by three-dimen-
sional instability seems to be very important since the flow
in a container is usually considered to be an example of a
strictly axisymmetrical vortex breakdown,

At the first sight it is unclear why the linear stability
does not depend on the boundary condition at the axis as
obtained in the present computations for different types of
container flow (the bottom line in Table 1). It seems there-
fore reasonable to assume that the development of pulsating
flow in a container is due mainly to instabilities in the flow
region external to the recirculation zone. Thus, the swirled
flow in the vicinity of the container axis is forced essentially
by a pulsating external flow.

The results of stability computations for a flow in a con-
tainer with “fluid" and "solid" axes are shown in Fig. 3.
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The azimuthal velocity variations, obtained from the
solution of linearized system of equations for Re = 2530 <
Regr and Re = 2550 > Reg, are presented in Figs. 3a,b and
Figs. 3c,d correspondingly. The decay and growth of the dis-
turbances is very slow. The same values obtained from the
solution of the full nonlinear system of equation for Re =
3000 are shown in Fig. 3e,f. The initial nondimensional dis-
turbance was ¢ = 0.001. Almost identical behavior of the
solution in container with "fluid" and "solid" axis indicates
that there is only small influence of the boundary condition
at the axis on the transition from the steady to oscillating
axisymmetric vortex breakdown.

2.3 Vortex breakdown in an annulus (radii ratio R « 0.5).

As it was explained above the flow patterns in the
annulus can be computed by continuation in radii ratio R
starting from the container flow with "solid" axis (R = 0). In
such a way one can follow the transition of separation bub-
bles while the curvature of the annulus gradually decreases.
The interesting result which was obtained from this type of
computations was that even for high values of R ~ 095 a
steady separation bubble can emerge in the flow. Most of
our calculations were performed for the fixed values of R
and by continuation in Re. For the presentation we have
chosen R = 033 and R = 0.82 (the corresponding
nondimensional radii of the annulus defined as ry = (r; +
re)/2d were ry = | and ry = 35).

It worth to note that annulus is widely used as an instru-
ment in different fields of fluid mechanics for basic research
as well as for technological applications (see e.g. Kato &
Phillips 1969 and Gelfgat et al. 1972) and it is therefore
important to know the flow structure in such an apparatus.
Although the real flow in the annulus is usually turbulent, it
was shown in Kit & Mazor (1990) that the main features of
the flow structure and especially the form of the secondary
circulation cell could be captured quite satisfactorily by lam-
inar flow calculations. The range of existence of the steady
vortex breakdown obtained for an annulus with ry = 5 was
Re > 2900. The stability calculations for this case revealed
that the flow is unstable in the whole range.
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Fig. 3 Time variations of azimuthal velocity at the cross section center of a conventional container: a)
Re =2530, ¢) Re = 2550, e) Re = 3000 and of a container with a "solid” axis: b) Re =2530. d) Re =

2550, ) Re = 3000.
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Fig. 4 Streamline contours in an annulus with r, = 1 for a)Re = 1600, b)Re = 2250, c)Re = 3000,

d)Re = 3500, e)Re = 4250.

The situation is different for the annulus with nondi-
mensional radius ry = 1. In this case the range of existence
of steady separation bubbles at the inner wall of the annulus
is 1570 < Re < 4300 and the instability occurs for the first
time at Re = 2125. Consequently, there is an interval of
Reynolds numbers where the axisymmetrical steady vortex
breakdown exists in the annulus flow. There are no experi-
mental data for an annulus flow in this range of parameters,
thus a possibility of three-dimensional instability cannot be
excluded. However, since the intensity of the flow in the
separation bubble becomes lower when compared to conven-
tional container for the same Reynolds number and the axi-
symmetrical instability is shifted to the lower Reynolds
number, it can be assumed that the transition to unsteady
oscillating flow in annulus occurs through axisymmetrical in-
stability and not by three-dimensional instability. In Fig. 4,
the streamline contours of the secondary flow are shown for
several Reynolds numbers chosen from the interval of the
vortex breakdown existence. The azimuthal velocity com-
puted for Re = 2075 and Re =2125 from linearized system of
equations and for Re =2500 from full system, is presented as
a function of time in Fig. 5

3. Concluding remarks

The present investigation revealed that a steady separa-
tion bubble at the inner wall of the annulus could occur
when the nondimensional radius of curvature was finite. By
continuation in the radii ratio, steady solutions were obtained
for an annulus with relatively high nondimensional radius of
curvature, which indicates of a clear recirculation zone rel-
ated to the vortex breakdown at the inner wall of an annulus.
When this radius is relatively small, there exists a finite in-
terval of Reynolds numbers where this separation bubble is
stable. When the inner radius becomes infinitesimally small,
the annulus modifies to a container with a no-slip boundary
condition at the axis. The comparison of the flow structure
in this configuration and in a conventional container shows
that the influence of the boundary condition at the axis is
relatively small. The existence region of vortex breakdown is
slightly wider for the "solid" axis. There is almost no differ-
ence in the critical Reynolds number where the flow
becomes unstable through a supercritical Hopf bifurcation.
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