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AN EXPERIMENTAL STUDY ON THE DYNAMIC BEHAVIOUR
OF A HYDRODYNAMIC JOURNAL BEARING
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Department of Mechanical Engineering
University of Wollongong
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This paper proposes a new method to measure the
dynamic coefficients of journal bearings. Utilising the transfer
functions of vibrating responses to the exciting forces, all
coefficients can be found through the operation of a least-
Square-error estimator. Experiment results are also presented.

NOMENCLATURE
b s=1,2,3; i,j=x,y the damping coefficient of sth bearing

Bjj  ij=x,y,dimensionless damping coefficient
bearing clearance , m

Cb  =W/CS2 | N.s/m

=W/C, N/m

diameter of bearing, m

eccentricity (m) and eccentricity ratio e=e/C
exciting or dynamic force , N

film thickness, m ; H=h/C .

transverse inertia moment of the shaft , kg.m?
width of the bearing , m
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s=1,2,3; i,j=x,y the stiffness coefficient of sth bearing

i,j=x,y , dimensionless stiffness coefficient
shaft mass , lcg2
pressure , N/m

groove pressure
radius of the bearing , m
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c _ w Wy
Static load , N

¥, Z coordinates, m

variables vector

lubricant viscosity, N.s/m?

angular coordinate and attitude angle, rad
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Sommerfeld number

=C/R clearance ratio
frequency , rad/s
rotational speed of the journal, rad/s
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lubricant density, kg/m?
INTRODUCTION

The journal bearing theory has heen studied extensively
but there are still many unresolved topics, such as pressure
distribution, cavitation, boundary conditions, oil whirl and
critical speed etc. which need further investigation. Excessive
vibration of turbogenerator rotor bearing system can cause
catastrophic failures. The degree of vibration is greatly
influenced by the dynamic coefficients of the bearing, which

dominate the performance of a fluid film journal bearing. Many
measurement techniques have been developed but the results
still differ from one another. This paper attempts to investigate
experimentally the bearing characteristics and to find a suitable
method to measure the dynamic coefficients of the bearings.
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A journal bearing with two axial grooves shown in
Fig.1 has its characleristics defined in terms of the Sommerfeld
number, attitude angle, 4 stiffness and 4 damping coefficients.
These characteristics can be calculated by solving the following
dimensionless Reynolds equation :
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The boundary condition used in this work are:
(@ P(¢,0)=P($,L/R)=0
(ii) P(0,2)=P(¢e, Z)=0

(i) P(9,Z)=Pg
The Finite Element Method was employed to solve the

at the grooves (2)

equation. Integrating the pressure P in the x direction will yield
the fuid film force Fx and in the y direction Fy. Perturbing x ,
y . x and y yield the corresponding force changes AFx and
AFy and the dynamic coefficients are given by:
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In order to compare with the literature, the dimensionless
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Fig. 1 Hydrodynamic bearing and
oil film coordinate system




coefficients are defined as:

C CcQ
Kij= W kij=kij"Cl; ’ Bij ST
Fig.2 shows the calculated stiffness coefficients K and

by=b; /C, i,j=xo0ry (4)

dampiﬁg coefficients B, compared with those by Someya [1].
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Fig.2 Calculated bearing characteristics compared with
Someya [1]
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The existing journal bearing rig has three fluid film
journal bearings, each takes different geometric parameters and
their dynamic characteristics coupled to each other. There is no
present method that can be applied to estimate the dynamic
coefficients of these three bearings.

B 1 o ! L
Bearing 2
¥ y
Yio A \ L l| ¢ 12 y\2 Yo
C 11 F 2
| ==
—= = Z == / j
W
e 1 " ox
Bearing 1

- - A s - 3
Fig.3 Bearing system in the test rig Bearing

For the dynamic system shown in Fig.3 , its Lagrangian
equation can be wrilten as:

d dT. JdT
( ) X LE=0
where the system kinetic energy : T—l X"TMx

ar
and 55=0, dlax) =MX, ZF= QyF- BX-KX
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Lhen the system mathematical model is govemed by:
MX +B X+KX = QF

where: X=[X(,¥1 ,%X2,¥2,%3,y3]T

The equivalent mass matrix M, damping matrix B, stiffness

matrix K and force factor matrix Qg are shown in the

(5

Appendix.
Fourier transform was performed to obtain the frequency
domain model:

9 X(jo)
[K-0?M+joB]—— Fo) =Qp (6
Here :
X _ [ X069 yiG) %00y |*
Fgo) | F  Fgo) F(@®)  Fw)
= [H'T+j H'T] Q)
and Hr = (Hxlr. s HyI.r ’H‘Z.‘ ; Hy?r ,Hx?r . H3:3r)

H = (Hxli, Hyll, szl, Hyzl, Hﬂl, Hy3l)

superscript r and i mean the real and imaginary parts

respectively.
At frequency @), the above transfer function can be expressed
as a matrix :
[ Huin  Hzaz o ... Hecis ]
He=| Mo  Haa ... Has

Exciting the shaft n ( n22) times with different
frequencies yield n sets of linear equations (6) which are
rearranged as:

AZ=Q
where the coefficient matrix Z has the form:

by ke ki kly k3y k3y bl b2 bl by b3, b3y |
{kh kf kix iy Ky kyy bjx bjx bix biy by b?y]

The least-square-error estimator of Z is:
2=(ATAY1ATQ ©)

The excitation force F can be any kind of dynamic force,

®

and need not necessarily be a harmonic force. If the rotor is
excited harmonically only twice, the above estimator (9)
reduces to the traditional harmonic excitation method [2]. If
it is a pulse excitation which involves a wide range of
frequency characteristics , the method can yield all
coefficients directly. Previously, other researchers [4] have
to use the regression method to determine the coefficients
which takes long calculation time, and the results are easily
affected by the initial coefficients values.

EXPERIMENT

Fig.4 shows the diagrammatic view of the bearing test
rig. Its basic data are:
200 mm diameter x 200 mm length for hydrodynamic bearings
280 mm diameter x 200 mm length {or hydrostatic bearing
Clearance ratio (C/R) of the hydrodynamic bearing: 0.075%
Shaft speed: 10 --- 4000 rpm (driven by a 16 kw DC motor)
Static load : 0---120 kN
Dynamic force : 0--- 28 kN , harmonic
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Fig. 4 Diagrammalic view of the journal bearing tesl rig

Excitation frequency: 0--- 60 Hz

Lubricant : ISO I5 lubricating oil

Two Kulite Semiconductor XTM-1900 pressure transducers
and two Bently Nevada probe 33103 proximitors are buried in
the hollow shaft and connected to the amplifiers through a 24
channel slip ring. Thirty eight thermocouples are buried around
two hydrodynamic journal bearings. $tatic load is applied to
the shaft by an air bellows through a lever and a ball bearing in
the middle of the shaft. The dynamic force was generated by an
electric vibrator and transferred to the shaft through a
connecting rod and the ball bearing, whose mass is negligible
compared with the rotor. The exciting force angle 8 is 30°. All
signals during the experiment were sampled by a Mac llcx
computer with one 833 kHz and one 142 kHz A/D converters.

Fig.5 shows the pressure and gap distribution curves
measured at the mid plane of bearing 1. The least-square-error
parameter estimate method was employed to identily the
eccentricily ratio € and the attitude angle ¢o. Fig.6 presents a
measured gap curve and its estimated eccentricity ratio and the
attitude angle. From Fig.6, the estimated € and o by the least-
square-error method provided the curve of best fit from the
measurement. The measured € and ¢eo, as shown in Fig.8 ,
agree well with the theoretical calculation.

To measure the dynamic coefficients, the shaft was
vibrated 4 times at different frequencies. At each [requency
when the response was stable, the exciting force and slalic
load from two force transducers and the shaflt vibrating
displacements from 6 proximitors were sampled and stored.
The Fast Fourier Transfer (FFT) was performed to convert
these time domain signals to frequency domain and the six
transfer functions were [ound at each vibrating frequency.
These transfer functions were then substituted into equation
(8) and the coefficients calculated through the least-square-
error estimator (9). Fig.8 shows the data processing
procedure. The exciting force (in kN) and some vibrating
displacements at frequency 26.5 Hz. are shown in Fig.9. The
measured coellicients are tabulated in Table | and 2.

The measured coefficients Kxx, Kyy , Bxx and Byy

correlated fairly well with the theory. But some cross
coefficients as Bxy and Byx differ significantly from the
calculation. At this stage, it is difficult to say that the theory
needs modification. Further investigation indicated that if the
shaft is excited at only one direction, Eq.(8) is ill-conditioned
(the condition number lAll IIA-!]l >> 1) which means a little
error in the transfer functions will yield big discrepancy in the
coefficients [6]. Since the rotor mass is much smaller than the
bearing load and the vibrator frequency is limited to 60 Hz, the
inertial item @2M in Eq.(7) is much less than the exciting force
F. Changing the exciting frequency will not affect the system
model significantly as it makes system model Eq.(8) either ill-
conditioned ( in this work, [IAIll IA-1ll> 105 ) or almost linearly
dependent at different exciting forces. To improve the
condition, another exciter is needed to exert dynamic force at
different direction. Secondly, the bearing clearance ratio
(C/R=0.075%) at this step is very small. To keep the oil film
force linear the vibrating amplitude should be very small (<
10% of C ), and the available proximitors can not measure
such a small amplitude vibration accurately due to small signal
to noise ratio. Raising the vibrating amplitude to obtain
sufficient measurement accuracy will be in conflict with the
assumption of linearized oil film forces and it can produce large
error. To eliminate the error, the clearance ratio should be
increased to a common value such as 0.15%.
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Fig.5 Measured pressure and gap distribution around bearing
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Fig. 9 Exciting force and corresponding responses

Table 1 Measured coefficients at lower eccentricity

Bearing #1 N=600mpm W=9700N S$=0.5968 - 500C
ps=3 bar Excited frequencies: 21.2, 26.5, 31.0 and 32.9 Hz
stiffness kxx kxy kyx kyy
MN/m 606 -349 194 214
theory 475 =174 565 242
damping bxx bxy byx byy
MN.s/m 7.17 -2.67 -1.77 15.5
theory 9.02 0.48 0.48 18.5

Table 2 Measured coefficients at higher eccentricity

Bearing #1 N=200mpm W=22720N S=0.0832 7. 500C
ps=3 bar Excited frequencies: 21.2,26.3, 31.3 and 34.7 Hz
stiffness kxx kxy kyx kyy
MN/m 837 422 -482 901
theory 548 -26.6 986 1148
damping bxx bxy byx byy
MN.s/m 6.34 -2.05 -3.66 88.9
theory 20.4 27.0 27.0 90.7

CONCLUSION

1. The experimental static characteristics of the journal bearin g
agree with the theoretical calculation based on the Reynolds
equation and Reynolds boundary condition .

2. This work derived a least-square-error estimator for all
bearing coefficients, which can be used in any type of
excitation force.

3. As an initial investigation, the measuring accuracy of the
dynamic coefficients in this paper is fair. To improve the
accuracy, the clearance ratio should be increased to a larger
value and two-direction excitation should be adopted in future
work.
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APPENDIX MATRICES IN EQ(S)

Q= [LosB/, bsinBA, 1 csOh, Isnbh0,0)T
= [ ql ’ q 2 L bl % ] r

mi+] 0 mhl-) 0 0

0 l'll]i-] 0 mllz-J 0

M=—]“ mhl-] 0 mif+] 0 0
a0 mhl-J 0 mli+] 0

0 0 0 0 a®ms 0

0 0 0 0 0 alms

b2ictd?kd bkl +d?kd -bekhi-dekd -bekly-dekdy adkd, adkl,
blkjetd?iic b2ty +d?kj, -bekle-dekd -bekly-dekd, adky, adkd,

K =) -bekix-dekdy -bekly-dekdy c2khre?kd, ckly+e?kd; -ackd -ackdy
-bekja-dek -boky-deky c?khte?ky cldy+elkd, -ackl -ackfy
aulkix adidy -ackdcackly  a’(Khorkds) al(khtkdy)
adk adkjy -aek, -ackjy  a%(Kjx+kiy) a¥(kfytigy)
b2bhcrd?bd: b2b3+0%bE -bebl-debl -bebly-debdy adbd, adbl,
blbjitd’bl bbjy+d’bfy -bebli-debl -bebly-debdy adbd, adbi,
B={ -bebla-debic-bebly-debdy cblvte?ble c2bly+e?bdy -aebl -achd,
-bebjx-debiy -bebyy-debjy ¢blare?bd, cPblyte?hd, -achd, -ac

oS o

adb, adb, -aehd, -achiy  a’(bic+bl) al(bdy+bd,)
adbjx adbly -aebis -achly  al(bjtbix) a2(biy+bly)
in which;
a=1l; + 13 b=l+1 c=1-1
d=1-1; e=1-] see also Fig, 3
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