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ABSTRACT

The optimum sail geometry is analytically obtained for
the case of maximizing the thrust under equality and inequality
constraints on the lift and the heeling moment. A single
mainsail is assumed to be set close-hauled in uniform wind
and upright on the flat sca surface. Governing parameters are
the mast height, and the gap between the sail foot and the sea
surface. The lifting line theory is applied to analyze
aerodynamic forces acting on a sail. The design method
consists of the variational principle and the feasibility study.
Almost triangular sails are found to be optimum.

INTRODUCTION

Analyses of sail acrodynamics have been conducted by
Tanner (1967) and Milgram (1968) by using the lifting line
theory. They concluded that sail designers should trade off
drag reduction against the heeling moment constraint.

Sparenberg and Wiersma (1976) have treated this
trade-off problem by introducing Munk's variational principle
(Munk, 1919) into analysis of sails. They presented
asymptotic and numerical solutions for the optimum
circulation that maximize the thrust with a given side force and
a given hecling moment. Wood and Tan (1978) also computed
the optimum circulation about sails having the maximum thrust
and a given heeling moment through trial-and-error procedure,
Both design methods, however, lack the feasibility study, and
present the optimum circulation only. Hence it is an open
question if all their results could be realized even within the
framework of their theories.

This study presents the optimum sail geometry through
the optimization and the feasibility study.

DESIGN GOAL

The most important performance of a yacht is its ability
of sailing to windward. This performance can be optimized by
maximizing the thrust.

In steady-state sailing close to wind, acrodynamic and
hydrodynamic forces are in equilibrium as is shown in Fig. 2,
Considering hydrodynamic characteristics of hulls, the
conventional wing theory implies that the boat drag, hence the
thrust, can be approximated as a quadratic function of the sidc
force. Therefore the side force, hence the lift, shall be
maximum to maximize the thrust.

The bending moment at the mast root is closely related
to the strength of the mast, and corresponds to the heeling
moment of yachts. The heeling moment and the righting
moment are in equilibrium. The righting moment has its
uppermost value, because this moment is produced by weights
of helmsmen and/or weight and buoyancy of the boat,
Therefore, cither the mast strength or the righting moment
constrains the heeling moment.

To summarize, our design goal is the maximization of
the acrodynamic thrust under the equality constraint on the lift
and the inequality constraint on the heeling moment.
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MODEL AND ASSUMPTIONS

We assume that the air flow is steady and inviscid, and
that the sea surface is flat.

We treat upright single mainsails that are set flat. In
this first course study, we neglect the elasticity of fabric sails.

Yacht sails are equivalent to wings of high aspect ratio
with mirror images reflected on the sea surface. It is
appropriate in the first approximation that we treat inviscid
flow past them by using the lifting line theory: approximating
wings as horse-shoe vortex distributions.

We neglect the presence of hulls. It is noted that the
presence of hulls reduces the effective gap between the sail
foot and the sea surface. Hence the negligence of hulls may
bring some safety margin to our design.

BASIC EQUATIONS

In steady-state sailing close to wind, aerodynamic and
hydrodynamic forces are in equilibrium (Fig.1);

T=LSin¢—DCOS¢EL¢-D1 (1)

S = Lcos ¢ +Dsin¢=—‘L, @

where T, L, D, ¢, and S denote the thrust, the lift, the induced
drag, the angle of sailing course to the relative wind, and the
side force, respectively.

Aerodynamic forces and the heeling moment are given
on the basis of the lifting line theory;
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where M, p, Vg, h, 7, and @ denote the heeling moment, the
air density, the relative wind velocity, the mast height, the
dimensionless circulation, the induced dangle of attack, and
the dimensionless gap between the sail foot and the sea
surface, respectively. The variable z is made dimensionless by
using h.




The lifting line integral equation with a mirror image of
the vortex system is given by

1

ag=-L[ 2L, Lyg,
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where § denotes the dimensionless gap between the sail foot
and the sca surface. By using a change of variables, this
equation becomes akin to the conventional lifting line integral
equation. Once we invert the transformed equation by using
the well-known formula, then through reversion of variables
we have
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where C is an arbitrary constant to be determined so that ¥(z)

satisfies the boundary conditions #(6)=y(1)=0.
The theorem of Kutta and Zhukovski gives

r)=1Cufa-ai @) ) ®)

where Cie, @ and c(z) denote the local lift curve slope

assumed to be 2w, the geometrical angle of attack and the
dimensionless chord, respectively. Solving Eq.(8) with
respect to c(z), we have

__ 1)
C(Z)_n{a_ai(z)}. (9)
VARIATIONAL PRINCIPLE

Our design concept can be expressed by using
variational principle, that is maximization of the functional

f 7@\ ¢ - ailz))dz
’ , (10)

that corresponds to the sail thrust, accompanied by Eq.(6) and
the constraints:
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Figure 1. Nomenclature
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1
Mmax = [ y(z)zdz
L]

hnax= ] Y (2)dz
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where Iy ax and my,; 4 denote upper limits of definite integrals.

B2 % ¥ 2 .,
Let us use values of the elliptic loading, ri¥1-z , with the
mast height, ke, as a reference, and we have

#° and 3, (12)

where u is the mast height ratio defined by h/ke.
Introducing Lagrange multipliers, A1, Am and A, and a
slack variable, &, we have the extended functional:

1
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Take the first variation of the functional above with

respect to Ay, Ay, Aq, &, @i and y, and we have six stationary
conditions. From the first three, we regain constraints on the
lift and the heeling moment, and Eq.(6). The next condition is

Am&=0: A,=0 or &=0. Hence there are two possible cases.
The stationary condition last but one yields the relation:

Aqg=7z). Using this relation, the last stationary condition
yields the boundary condition required for the optimum
solutions:

afz) = (¢ -4 - Az )12. (14)

Substituting Eq.(14) into Eq.(7) and using boundary
conditions on ¥z ), we have

dy 2
L
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where K, E and k denote the complete clliptic integrals of the
first kind and the second, and the modulus, respectively;

1

K= | —du—
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Equation (16) yields
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Case 1: £=0

When the slack variable & is zero, Eq.(13) implies that
the moment is equal to the given value. Equating Egs.(16) and
(17) respectively to their maximum values, Eq.(12), we have a

set of simultancous equations with respect to A; and A,
Solving these equations, we have A; and 4,, as functions of x
and 4.
Case 2: £=0

When £ is not zero, Ay is zero. Solving Eqs.(11), (12)

and (16), we have A; as a function of  and 6. As A,, is zero,
the moment is not more than the maximum value. This
condition is written in the form;

< (18)
where iy is a parameter dependent on J only.

The close examination reveals that Case 1 has greater
thrust than Case 2.

FEASIBILITY STUDY AND OPTIMIZATION OF
MAST HEIGHT AND GAP

Feasible solutions must satisfy the constraint on the
chord: ¢(z)=0. Equations (6) and (9) imply that this feasibility
is assured by positive ¥z). Some consideration leads to the
conclusion: ¥ (z) is positive, if

s pe, (19)
where 4. is a function of &, and no less than 4.

Let fope denote i in the segment of [tm, ] that

maximizes the sail thrust, and after considerable calculation we
have

1+52—2E
: 2K 5 (20)
(1+6)E-0°K - E-

Hope = %

The optimum ratio of mast height, tp,, is no more
than 4/3. If and only if 8 is zero, pop coincides with . at
1=4/3. Therefore, the optimum gap shall be zero,

Figure 2 shows the relation among pu, Hopr and p¢
against 6,

NUMERICAL RESULTS AND DISCUSSION

Figure 3 shows the optimum circulation distributions

for =0, 0.05, 0.1 and 0.15 together with the clliptic loading
as a reference. Enclosed areas correspond to total side forces
and all are the same. Most of the necessary lift is produced in
the vicinity of the sail foot so that the heeling moment would
not exceed the maximum value. Since the mast height becomes

smaller for larger 8, even optimum sails of large d have rather
smaller aspect ratios.

Figure 4 shows the optimum sail geometry when the
cffective angle of attack at the sail foot, @-;(9), is 2yg7. It is

noted that the practical triangular sail is fairly close to the
optimum geometry of zero gap. We have the gecometry of this




ultimately optimum sail with no gap given by elementary
functions as

11-z2 +22£In e 22
ciZ) = e, 20
@) EETRvE (20)
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Let us introduce the thrust ratio:
T _ (L/D.)¢ - D/D. 1)

T @wD)p-1

where quantities with subscript "e" denote those of the elliptic
loading.
Figure 5 shows the numerical results of thrust and drag

enhances the arag and reduces tne thrust considerably.
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and /5 (36 deg.). It is quite evident from this figure that the
presence of the gap between the sail foot and the sea surface
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