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ABSTRACT

The paper describes the salient features of an explicit
spatial marching algorithm for high speed flows being
developed by the author and its application to compute
hypersonic flow past a compression comer. The
procedure solves the Reduced Navier-Stokes equations in
generalised coordinates and uses the Five-stage Runge-
Kutta technique to advance the solution spatially. Unlike
the other spatial marching procedures the present one
retains the time derivative in the governing equations.
Using this algorithm an unseparated hypersonic flow at
Mach 14.1 past a 15° comer is computed. This is a
frequently used test case studied experimentally by
Holden and Moselle. The computed wall pressure and heat
transfer rates show reasonable agreement with the
experiments. The pressure and Mach number contours
indicate that the method is capable of capturing the
features of a hypersonic interaction.

INTRODUCTION

Spatial Marching procedures have been extensively
used in computing supersonic and hypersonic flows
(Lawrence et al., 1989, Korte and McRae, 1988, Siclari
and Del Gudice, 1990, Harvey III et al, 1991,
Chitsomboon et al., 1988, Chang and Merkele, 1989). For
these high speed flows with a dominant direction, it seems
very appropriate to use the Reduced Navier-Stokes (RNS)
equations which are obtained by dropping the viscous
derivatives in the flow direction. Further, these flows are
characterised by the fact that any upstrecam influence in
them is limited to subsonic portions inside thin boundary
layers. Hence the Spatial Marching methods, wherein one
marches from a station with x or E = constant to the next
downstream station, arc the appropriate ones to be
employed. It may be pointed out that such methods are
almost an order of magnitude faster than the Time
Marching techniques. Many Spatial Marching methods
have been developed in literature and most of these have
been implicit in naturc. But from the point of view of
modern  computer architecture  involving  parallel
processors, explicit schemes scem to be very desirable. It
is well recognised that the explicit schemes are easily
implemented and they render themseclves readily to
parallel processing. In fact, there arc a few explicit
Spatial Marching algorithms in use (Korte and McRae,
1988, Siclari and Del Gudice, 1990, Srinivas, 1992).
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The present author has been developing an explicit
procedure based on the Jameson - Schmidt scheme
(Jameson and Schmidt, 1984). A special feature of the
method is that it retains the time derivative ,dW/dt, in the
governing equation whereas it is dropped in the other
methods. Now the term At is interpreted as a relaxation
parameter. An earlier version of this scheme was used to
compute the interaction between a shock wave and a
supersonic boundary layer (Srinivas, 1992). The results
were encouraging but the solution seemed very oscillatory
near the shocks.

The present work is an extension of the previous one.
Now the algorithm makes use of a five-stage Runge-Kutta
procedure with three evaluations of dissipative terms
instead of a four stage-scheme. The previous work was
characterised by the fact that repeated downstream
marches were carried out in order to take into account the
scparation of flow. But in the present work an
unseparated flow is considered and hence only one sweep
is performed from upstream to downstream.

The test case chosen is that of a hypersonic flow at
Mach 14.1 past a compression corner (15°. This problem
has been experimentally studied by Holden and Moselle
(1969) and has been a test case in many computational
studies (Lawrence et al., 1989, Korte and McRae, 1988,
Rudy et al., 1989). This example provides a good
benchmark to validate the computational methods for their
ability to compute hypersonic flows and hypersonic
interactions.

In this paper the marching algorithm and the
governing cquations are discussed next. This is followed
by a discussion of the computed results.

MARCHING ALGORITHM
The broad features of the algorithm used to advance
the solution spatially are described in this section. For

details one is referred to Srinivas (1992).

Goveming Equations

The governing cquations are the Reduced Navier
Stokes equations in two dimensions and for a spatial
marching in the E - direction are given by,
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In the above equation p is density, u and v are the
velocity components in the x and y directions, and e is
total energy expressed as,
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The inviscid flux terms F, G and the viscous flux terms in
the 7 direction, G, are given by
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The various terms in eqn. 4 are given by,
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Pressure Splitting

In accordance with the spatial marching procedure, the
pressure term in the x - momentum equation is split as,
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where @ is a function of the stream wise Mach number
, M, and is given by
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where o is a safety factor and is equal to 0.7 in the
present study.

In the above cquation the term p~ accounts for the
upstream effect. There are many ways of handling this
term and one such is described in Srinivas (1992). In the
present example considered there is no separation of flow
and as such the upstream cffcet will be very limited.
Accordingly this term is dropped.

Marching Algorithm

If now a suitable discretisation Q is assumed for the
spatial derivatives in the eqn. 1, we have
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This equation is integrated using the Jameson -
Schmidt scheme ( Jameson and Schmidt, 1984 ) which is
a modified form of Runge - Kutta technique and is given
by
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where 'k’ denotes the number of stages used in the Runge
- Kutta method and is 5 in the present work.

Spatial Discretisation

In the present work the m - derivatives are discretised
using the central differences as
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For the § - derivatives, two point back ward differences
are used --
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where F* denotes that p* has been substituted for pressure
in the calculation of the flux term F in eqn. 4.

The procedure needs artificial dissipation for shock
handling and for convergence. These terms follow
Srinivas (1992) and Swanson and Radespiel (1991) and
are calculated at stages 1,3 and 5 in the Runge-Kutta
processing of the solution (see eqn. 9).

The marching procedure is carried out as follows.
Starting conditions i.e, the freestream conditions are
prescribed at the upstream station. Then the solution is
marched downstream by performing adequate number of
iterations at every station (based on egn. 8) till the rms
change in density for the station is less than 10,
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RESULTS AND DISCUSSION

The geometry of the test case is shown in Fig.1 and is
that of a hypersonic flow over a 15° compression comer.

RESULTANT SHOCK ~

COMPRESSION
FAN
BOUNDAR-LAYER EDGE

Figure 1, Geometry of the test case.




The flow conditions correspond to one of the cases
experimentally studied by Holden and Moselle (1969) and
are as follows: M_=14.1, T,=72.2K, Re=1.04x10°, y=1.4,
1=0.439m, T,=297K and Pr=0.72. Re, is the freestream
Reynolds number based on the distance between the
leading edge and the compression comer. The flow
involves a very strong shock and an unseparated laminar
flow. Since the freestream static temperature is low
(72.2 K) there are no significant real gas effects even
though the freestream Mach number is high (14.1). The
flow however involves complicated inviscid and viscous
interactions. The leading edge shock interacts with the
compression shock and produces a stronger resultant
shock. Heat transfer rate and pressure rise sharply
following the compression corner and the boundary layer
thins down. Thus the flow is challenging from a
computational point of view.

Computations were started from the leading edge of
the geometry with a very fine grid in the flow direction
consisting of 100 points between x=0 and 0.1m. In the
region between x=0.Im and 1m, 150 uniformly spaced
grid points were used (see Fig. 2 which shows the grid
from x=0.4m to x=1m). In the flow normal direction the
grid spacing was non-uniform with 45 points and the
placing of the first point close to the wall was 1x10*m.

Figure 2, Computational Grid.

The distribution of the wall pressures expressed as

C, ( p/0.5 p. V.7 is shown in Fig.3 together with the
experimental data of Holden and Moselle (1969). There is
a good agreement in general. But in regions upstream of
interaction, pressure is over predicted in the present
computations. This feature is present in most of the
computational results for this problem ( Lawrence et al.,
1989, Korte and McRae, 1988, Rudy et al., 1989).
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A, Holden and Moselle (1969).
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Figure 4, Distribution of wall heat transfer coefficient,
, present, A, Holden and Moselle (1969).

The distribution of wall heat transfer coefficient Ch
(defined as q'/p U, (H. - H,) where q’ is the heat
transfer rate, H is enthalpy and eo denotes the freestream
conditions) shown in Fig.4. seems to exhibit a better
trend. But any agreement in the Ch values in regions
upstream of the corner should be considered fortuitous.
Downstream of the corner pressure and heat transfer
coefficients rise somewhat sharply in the present
computations and exhibit a typical first order behaviour.

A detailed computational study by Rudy et al.(1989)
has revealed that substantial three dimensional effects are
present in the experimental results of Holden and Moselle.
In fact, Rudy et al. use a three dimensional code with an
angle of attack correction to obtain results that are in
excellent agreement with the experimental ones. The
present results were obtained with a two dimensional code
without any angle of attack correction thus accounting for
the discrepancy between computed and experimental
results.

Figures 5 and 6 show the pressure and Mach number
contours as computed in the present study.
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Figure 5, Pressure contours.

Only the contours on the ramp part of the geometry are
shown. The formation of the induced shock at the
compression corner and the interaction of this shock with
the leading edge shock giving rise to the resultant shock
are clearly seen. However, the expansion wave forming
out of this interaction is diffused. But it is to be noted
that the pressure contours are free of oscillations.
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Figure 6, Mach number contours.

The pressure distribution and heat transfer rate predictions
could perhaps be improved using a higher order method.
The possibilities of improving the order of accuracy of the
present procedure will be considered in future.

CONCLUSIONS

The hypersonic flow over a 15° compression ramp is
computed using an explicit spatial marching procedure
developed by the author. Computed results are found to
be in reasonable agreement with the experimental ones.
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