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Abstract large—eddy simulation (Rogallo and Moin, 1984), stress

The anisotropic k—e turbulence model is simplified by (Launder, et al, 1975) and k —e¢ model. In engineering
using the boundary layer approximation. And the problems, the k —e model based on an isotropic eddy —
simplified anisotropic k — ¢ model is compared with the viscosity representation for the Reynolds stress is widely
Gessner’ s algebraic stress model. The developing turbulent used, mainly due to short computing times and the
flow in a square duct involving turbulence — driven simplicity of model. However, owing to the intrinsic
secondary flow is investigated numerically by making use isotropic property of the k — & model, it can not predict
of a finite volume method. The turbulence is represented accurately the complex turbulent flows subjected to extra
by the simplified anisotropic k — ¢ model. The present rates of strain which are caused by the wall, curvature and
results are compared with the detailed laser- Doppler Coriolis force. In order to overcome the difficulties of the k
anemometry measurements of Melling and Whitelaw. — & model, various types of stress models have been

developed. 1In those models, no use is made of an eddy

Notation viscosity representation for the Reynolds stress. Hence the
Dy, =hydraulic diameter stress model can more accurately predict the complex
k =kinetic energy of turbulence turbulent flows. In the calculations of the flows with three
p =mean pressure — dimensional flows, however, the number of flow
Re =Reynolds number, =Dy. uy/v quantities in the stress models increase significantly
Ry~Rs3  =Reynolds stress components compared with the k—¢ model. In order to make the k—¢
Ri; =Reynolds stress tensor model be more universal, Nisizima and Yoshizawa (1989)
U, v, W =mean velocity components in the x, ¥y, have proposed an anisotropic k — ¢ model based on the

and z directions, respectively. statistical results, and numerically investigated the
Uy =mean primary bulk velocity turbulent channel and Couette flows.
ui, U, U, =mean velocity tensors The turbulent flow in a straight duct is a typical
u, uf =fluctuating velocity tensors example of complex turbulent flows. This flow is
U = mean velocity along axis of square accompanied by the secondary motion in the plane

duct. perpendicular to the streamwise direction, and this
P =coordinate axes, Fig. | secondary motion is caused by turbulence. Fully —
Xiv X; = rerdifite tEnEaTs developed turbulent flow in square ducts was studied by
B —Hronecker dbitz Gessner and Jones ( 1965), Melling and Whitelaw
& —dissipation rate (1976), among others. Melling and Whitelaw performed
v =kinematic viscosity detailed experiments for fully —developed flow using laser-
Ve =turbulence viscosity Doppler anemometry, and were the first to describe the
H =coefficient of viscosity axial wvelocity field distribution in detail. The first

P =fluid density. calculation of secondary flow in a square duct was carried

out by Launder and Ying (1973). Improved calculations

Introduction were performed by Gessner and Emery (1976), Demuren

As representative turbulence model, there exist the and Rodi (1984) by using the nonlinear algebraic stress

1193



model.

In the present paper, the anisotropic k — e model
(Nisizima and Yoshizawa, 1989) is simplified by using the
boundary layer approximation. The comparison of the
simplified anisotropic k —e model with Gessner’ s model
(Gessner and Emery, 1976) is made. The developing
turbulent flow in a square duct is numerically investigated
by using the finite — volume difference method. The
comparisons of the present results with experimental data

are made.

Anisotropic k — ¢ Model and Its Simplification and
Analysis.

The ensemble—mean equations of motion for steady-
state, incompressible and turbulent flow can be written in

Cartesian tensor notation as follows;
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where v is the kinematic viscosity, R; the Reynolds stress

defined as.

By =— (uiu} (3)
by using the ensemble mean { e
In the anisotropic k — e model (Nisizima and
Yoshizawa, 1989), R;may be expressed in the form;
3
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where ¢, are constants (m=1, 2, 3) k is the turbulent
kinetic energy, and & the dissipation rate of k. They are
determined from their own transport equations, that is
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where ¢,, ¢, ¢gand cgare constants, which are usually
chosen as
Cy = 0. 09,(‘” = D- 13.(',1 = I, 9,(}3 == 0- 069

The first two terms on the right —hand side of equation
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(4) give the familiar isotropic eddy —representation. The
third and fourth terms are crucially important in expressing
the anisotropy of Reynolds stress.

For the developing turbulent flow in a square duct
(shown in Fig. 1), it is known that the secondary
velocities v and w are two orders of magnitude less than
prime velocity u (except possibly in the viscous sublayer) ,
that u/ady and du/dz are of the same order magitude, and
that du/dy and du/3z are much larger than all other mean

velocity component derivatives.

Fig. | Coordinate system of a square duct

If the above approximations are applied to the
equation (4 ), simplified anisotropic Reynolds stress
components are obtained by neglecting the secondary
velocity gradients in the third and fourth terms in equation

(4). They are given as follows:
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where u is the streamwise velocity in x direction, v and w
are the secondary velocities in y and z directions,
respectively. Constants ¢, and c.3 are chosen as

eq = 0.07,03 =— 0. 015
according to Nisizima and Yoshizawa (1989).

The equations (11), (12) and (13)— (18) are the
simplified anisotropic k — ¢ model. Gessner and Emery
(1976) obtained an algebraic expression for Reynolds
stress components by neglecting the convection and
diffusion terms and by further neglecting all secondary
the Reynolds stress

velocity gradients in transport

equation. The forms of Gessner’ s model are as follows;



Rez — Ry = cocald /€ {(%)z— (%)z} 19
Rza = C‘zmkS/az%: L] % (20)

where ¢, and ¢sare constants. In the present model, (Rzz—

Rss) and Rasare given as follows:
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If the secondary velocity gradients in equations (21) and

Rog = 1, ¢ ( (22)

(22) are neglected, the present model is consistent with the
Gessner’ s model. Demuren and Rodi (1989) pointed that
the secondary velocity gradients are important for the
Reynolds stress relations, particularly for Ry The present
model has taken account into the effect of the secondary

velocity gradients on Reynolds stress Res.

Numerical Scheme and Boundary Conditions

All the differential equations introduced above are
solved by using the finite difference method, the brief
summary is provided.

(1) The computation domain is discretized, and all
variables are located at the common grid position as
opposed to staggered grid arrangements.

(2)Cartesian velocities are used as the variables to be
solved. The fully — elliptic Navier — Stokes equations in
Cartesian coordinate system (x,y,z) are discretized by
following the SIMPLE method.

(3) The linkage between the continuity and the
momentum equations is carried out through the pressure
correction equation which is derived from the continuity
and momentum equations.

(4) An effective momentum interpolation method,
which links the numerical fluxes through control volume
surfaces with the pressure at grid nodes, is applied to
eliminate the oscillation of pressure and velocity.

the details of the numerical procedure and applications
to other flow situations are given by Song Baojun
(1990).

Boundary conditions need to be prescribed at entry
plane, symmetry planes, exit plane and solid walls. At the
entry plane of the duct, a uniform distribution of all
variables js prescirbed. There the secondary velocities are
set to zero and k and ¢ are given such small values that the
eddy-viscosity # is about 100 times the molecular viscosity
». At the exit plane of the duct, the gradiecular viscosity
». At the exit plane of the duct, the gradients normal to
this plane of all the variables are set to zero, that is, the

flow is developed. At the symmetry planes, the velocity
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component normal to symmetry plane is equal to zero,
while for all other quantities, the gradients normal to this
plane are taken as zero. Close to the solid walls, all the
transport processes are modelled by using the wall function
method. For the three —dimensional turbulent flow, the
following wall functions based on the two — dimensional

flow assumption are used in the near —wall region.

M MU

= ) (23)
where it = (b + cd)E » g /v (24)

g = (ctk)E/Chy,) + F, (25)

dk

=t (26)

where y is the convectional coordinate normal to the wall.
The subscript p refers to the grid node next to the wall, k
and E are constants, T.is the reluctant wall shear stress and
u, is the reluctant velocity parallel to the wall. F,accounts
for the effects of both walls on the turbulence in the corner
region (Demuren and Rodi, 1984).

The computation is performed by using a (61 X21X

21) uniform mesh.

Results

The calculation development of the streamwise
velocity along the duct axis is shown in Fig. 2 for Re=
42000, where it is compated with the measurements of
Melling and Whitelaw (1976) . It is shown that the
calculated velocities rise first up to a maxium, and then
decrease. This is consistent with the conclusion of Demuren
and Rodi (1984). Also, it is shown that the agreement

with the measured data is satisfactory.
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Fig. 2. Flow development along axis of the square duct

Fig. 3.

streamwise velocity distributions along the wall and corner

(a), (b) compare calculated and measured

bisector at 36. 8Dy. 1t can be seen that the present results
agree with the experimental results. The discrepency
between the present results with the measured data is
mainly caused by the coarse graid nodes.

Due to the secondary flow associated with the
turbulence, the axial velocity profile is distorted, as shown
in Fig. 1. Comparison with the experimental data of

Melling and Whitelaw is also shown, and the results
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indicate qualitatively good agreement.

The calculated secondary flow velocities at x = 36.
8Dy, are shown in Fig. 5. It is seen that the present model
can carry out the secondary flow.

Conclusion

A simplified anisotropic k—e¢ model has been derived
according to the nature of flow in a straight duct. Through
the comparison of present model with Gessner’ s model, it
is shown that the present model can predict the turbulence
—driven secondary flow in a square duct.

And the three—dimensional developing turbulent flow
in a sugare duct has been numerically investigated, and the
results are shown to compare well with the detailed laser—
Doppler
Whitelaw.

In our opinion, the anisotropic k — ¢ meodel could

anemometry measurements of Melling and

provide a useful alternative to a second — order closure
model for complex flows. Future research should be
directed toward the prediction to the flow in curved ducts

using the anisotropic k—e model.
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