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Abstract
A caleculation procedure three-

dimensional incompressible, steady Navier-Stokes equations

is developed for

in general curvilinear coordinate system by using non-
staggered grids. A momentum interpolation is applied to
eliminate the oscillation of pressure and velocity. Through
the numerical computation on the laminar flow in a square
duct, it is proved that the convergency and the precision of
the present procedure are satisfactory. Finally, the three-
dimensional turbulent flows are numerically computed in a
radial rotating duct and a volute with trapezoid cross-
section.

The computed results are compared with the

available experimental data.

Notation
A = coefficients in the general finite difference
equations

B =width of the rotating duct

By = coefficient matrix in Eq. (6)

G; =coefficient matrix in Eq. (7)

Gy Ce = velocity components in r and # directions,
respectively

G® = effective diffusion coefficient for the general
scalar ®

H —=height of the rotating duct

J =Jacobian of the transformation

L =length of the rotating duct

M, , M3, Ms=convective terms along the (£,n.&) directions,

respectively

p = pressure

p = pressure correction

TRz =cylindrical coordinates

Re =Reynolds number

s =source term in the finite difference equation for
the general scalar ¢

u,v,w = Cartesian velocity components

Um =¢ross-sectional average veloeity

Xs¥Y.2Z = Cartesian coordinates

E, . =-curvilinear coordinates

n =density

AEAN\E  =cell boundary sizes in £, nand £ directions in the

transformed plane
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Q =angular velocity of the rotating duct.

D =general scalar quantity

Subscript

E,n,L =differentiation with respect to these variables

Introduction

In practice, there exist many of three- dimensional
turbulent flows in complex passages. The present numerical
computation for fluid flows follows essentially SIMPLE
method (Caretto, et al., 1972). However, this method
suffers severely from geometric limitation when it is used to
calculate the flows in complex passages. There are other
attemps to be developed numerical techniques using the
curvilinear ( 1980)
developed a finite volume method, which is applied to

coordinates. Demirdzic, et al.
calculate the flowfield inside the general passages. In this
method, the governing equations are represented according
to arbitrary contravariant veloecity components. However,
since the semistrong conservation form of the governing
equations is used, the convergency of the numerical method
addition,
arrangements are used to eliminate the oscillation of pressure
and veloeity, a

becomes poor. In since the staggered pgrid
lot of interpolation computations are
required in each step. With the aim of overcoming the
drawback of the staggered grid technige, Rhie and Chow
(1983 ) presented a numerical scheme in which non-
staggered grid technige was used and the governing equations
of Cartesian components were solved.

In the present paper, a calculation procedure is
developed for three-dimensional turbulent flows in complex
passages by using the non-staggered grids.

interpolation is applied to eliminate the oscillation of pressure

A momentum

and velocity. The laminar flow inside a square duct is
calculated to discuss the accuracy and convergency of the
The

numerically computed in a radial rotating duct and a volute

present procedure. three- dimensional flows are

with trapezoid cross-section.

Governing Equations
For steady flow, the governing equations involving the
continuity, momentum and other scalars are written as

following common form.



div(pE o D — G° o gradd) = §° ¢D)

where @ is an arbitrary variable, U the mean velocity
vector, G® an effective diffusion coefficient and S the
source term. According to the transformation E=£(x,y,z),
n=mun(x,y,z) and £ =& (x,¥,2), Eq. (1) can be
transformed into the new form in the (E,n,&) coordinates.
That is.

1+da d a
= a_é(le(D) + é‘r}(PMz‘i’) + a—é(ﬂMs(?))]
1

= 7{3—65[%()'11@\‘ + Ja®, + ja®:)]
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where J is Jacobian of the transformation, and
Mi=.;"liu+j‘219+,;"3iw (7'= 1’213> (3)

where jj1~jas and jj; ~jas are the coefficients of coordinate
transformation.
(Song, 1990)

For turbulent flow, the diffusion coefficient in the

They are determined from x:, x,, etc.

momentum equations is replaced with an effective viscosity
Uerrs Which is the combination of molecular and turbulent
viscosity. The turbulent viscosity is determined from the
values of the turbulence kinetic energy and its dissipation
rate. And the values of trubulent kinetic energy and its
dissipation rate are determined from their own transport
equations (Launder and Spalding, 1974).

Numerical Procedure
Computational domain is discretized in terms of non-
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Fic,1 Grid arrangements in
computational domain

staggered grid arrangements (Fig. 1). In terms of the

SIMPLE procedure, the difference equation for Eq. (2) is

obtained as follows.

ApDp = Ay + AvDyw + Ax @y + Ay 4 Ay + An®Dy

+ SPTAEARAE + STTAEARAS “)

where the coefficients A involve the flow properties of

They are modified by

employing the hybrid scheme. S is originated from the cross

convection, diffusion, area, etc.

derivatives in the diffusion terms and is the result of the
nonorthogonal coordinate system. For convenient sake, S7is
combined with S®in the following equations. In equation
(1),

respectively, and the discretized equations of the momentum

it is assumed that & jis equal to u, v and w

equations can be obtained.

The linkage between the momentum and continuity
equations is handled through a pressure-correction equation
(Patankar, 1980). It is assumed that velocity components
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are u*,v" and w" when pressure field is p*. They should
satisfy the discretized momentum equations. In general ,
u®,v®and w* do not satisfy the continuity equation. It is
assumed that p* is corrected according to
p=p" +7 (5)
Then, the velocity components will be corrected by the
relations
u=u" + Bup: + Bup, + Bup:
v =12" - Bup: + Bup, + Bujp:
w=w" + Bap: + Bup, + Bup:
And the correction equations for M; ,Msand Mjare obtained
from Eq. (3), that is,
M; = M; + ChP'; + C'z-']?;,- + Cs-}":;

(6)

(t=1,2,3)
(7
where M;" is based on u*, Cii — Cy; are
coefficients involving By, jj. Substituting Eq. (7) into the
discretized continuity equation, and then using the second-
order center- difference approximations for the pressure

v* and w".

gradients on the control volume surface, one obtains the
pressure correction equation, that is,
Abpp = Abpy + Al -+ Akpy + Alps -+ Abpy + Abp, + St
(8)
where the coeffients A" involve coeffients By, C;, density,
etc. , and S represents the imbalance of mass in a control
volume and the added source terms resulting from the
nonorthogonal coordinate system.

Since the non-staggered grids are used, the oscillation
of pressure and velocity is produced (Patankar, 1980). To
eliminate the oscillation, the momentum interpolation
equations are applied. In the computional domain (shown in
Fig. 1), the u-momentum equation at the grid node Gigiyk)
(node P) is written as follows,

iy = HY e 4+ (Bupsdise (9)
where H represents the combination of the momentum
terms, source terms and the pressure gradients along nand ¢
directions. [n similar maner, u-momentum equations in the
grid node (i+1,j,k) and in the control volume surface (i
1/2,j,k) are written as follows ;

i1 = i yu + Bupdir e

grizgm = Wtz + (Bups) gz

(10)
(11)
where (i-+1/2,j,k) denotes the intersection of the control
volume surface and gridline. Similarly, the v-momentum
and w- momentum equations in (i -+ 1/2, 3, k) are also
obtained. Substituting (11) into (3), one can obtain the
convective term along the & direction in control volume
surface, i.e. ,

My = Torimin + Bpdatizzim (12>
HG 200+ g0 +
JaiHE 12000, HY HY and HYin (i41/2,j,k) are determined
from the linear interpolation of H*, H"and H"in (i,j, k)
and (i--1,j,k), and H"in (i,j,k) can be determined from
Eq. (9) in terms of the preliminary values of velocity and

where  Hiqm0 =

pressure.

From the equation (12), it is seen that the flux on the
control volume surface is related with the pressure in the
neighbouring nodes.

The main calculation steps in the present procedure are




as tollows

(1) The pressure field is assigned guessed values
the
in the coefficients in the
equations being evaluated in terms of Eq. (12).

(2) The momentum equations are solved,
convective terms involving

(3) the pressure correction equation is solved, and
then the pressure and velocity are corrected

(4) The
equations are solved so as to provide the new distribution of

kinetic energy and its dissipation rate

effective viscosity.
(5) Steps 2,3 and 4 are repeated untill a converged
solution is obtained

Results

Laminar Flow in a Square Duct. In order to validate the
present procedure, the laminar entrance flow in a square
duct is numerically studied. Fig. 2 shows the comparison of
the main-stream velocity along the centerline. It is evident
that the number of grid nodes have a great influence on the
precisions of solution. the computations are performed in
MICRO VAXI.
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Fig.2 Development of main-stream velocity
along centerlin

Turbulent Flow in A Radial Rotating Duct Fig. 3
shows a channel rotating about an axis normal to the main
flow direction. The Cartesian and curvilinear coordinates
rotating about the axis are chosen to facilitate the
calculation. Coriolis and centrifugal forces must be included

in the momentum equations but not in the k-¢ equations.

A
o5t

B /
Fig.3 Coordinates

F.
!

of rotating duct

The geometrical dimensions and flow parameters are as
follows

H=44. 5mm,B=121mm,L=6(10mm,

Un=15. 2m/s ,0=300rpm,Re=066500
In the calculation, a uniform velocity at the entrance is
assumed with no secondary wvelocities. At the outlet plane,
the main stream velocity is first estimated from the upstream

value and then is adjusted to satisfy the total mass flow

497

given, and the gradients of other variables along the main
flow direction are assumed zero.

The computed data are compared at 610mm with
measured main stream velocities in Fig. 4 and cross-
velocities in Fig. 5. The predictions are satisfactory.
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Fig.4 Main-stream velocity distribution
(x=610mm, y=0)
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Fig.5 Secondary velocity distribution
(X=6‘]0Tl'll'1'!, 2=O)

Turbulent Flow in A Volute with Trapezoid. A
schematic diagram of a volute is shown in Fig. 6. The
geometrical dimensions and flow parameters are as follows

D;=480mm, Dy=538mm, b;=64mm
Q=96m*/min

p=60°,

Fig.6 Volute geometry and coordinates

The outer wall of the volute is a section of spiral,
which is designed according to the one-dimensional inviscid
theory. With the reference to Fig. 6,
cylindrical coordinates (r, 6, z), the curvilinear coordinates
(E,y1n,L) may be expressed by

based on the

E=C; 4
=7
= P =00
n=Ce—"
g =il



where r;is the inner radius of the volute, and it is constant;
rois the outer radius, and it changes with 0; (zo—z) is the
width of the trapazoid cross-section, and it changes with 6
and r; C;,C,and C;are transformation constants.

With reference to Fig. 6, The computation domain is
bounded by the first entrance (Entrance 1), the second
At the

entrance I, Cr, Care given, Czis set to zero. At the

entrance (Entrance I ), walls-and exit plane.

entrance I , Cr, Cz are set to zero, Cyis given in terms of
the one-dimensional inviscid theory. At the exit plane, the
distribution of main flow velocity is first estimated and then
Also, the
gradients of other variables along the emain flow direction

is adjusted to give the required mass flow.
are assumed zero. Close to the wall, all the transport
processes are modelled by using the wall function method
(Launder and Spalding, 1974).
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Fig,7 Mngular momentum profiles(z=0)

Fig. 7 shows the distributions of the angular momentum
(Cy = r) in the symmetrical plane at the different 6. The
distributions of the radial velocity in symmetrical plane at
the different # are shown in Fig. 8. The comparisons are
made between the numerical results and the experimental
data which were measured with the spherical five- hole

probe. It is shown that agreement is satisfactory.

/e =
Cr(m/=) Curve:A- 90,
B- 180
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Fig.8 Radial velocity profiles (z=0)

£

Conclusions
The calculation procedure has been developed to predict

the three-dimensional turbulent flow in general curvilinear
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coordinates. Through the numerical study on the laminar
entrance in a square duct, it is proved that the convergency
and the precision of the present procedure are satisfactory.
The turbulent flows are numerically calculated in a radial
rotating duct and a volute with trapezoid cross-section. The
preditions show physical realism and exhibit satisfactory
agreement with the experimental results.
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