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ABSTRACT

This paper investigates the dynamics ol a vapour
cavity bubble above a horizontal rigid surface. The collapse
and rebound of the bubble is modelled by a boundary integral
technique. Tabulated properties of the vapour is used to
calculate the thermodynamics process inside the bubble. The
results demonstrate the relationship between the initial
conditions and the pulsations of the vapour bubble.

INTRODUCTION

Vapour cavity bubble is generated in the flow of liguid
where the local pressure reaches below the vapour pressure.
As the bubble migrates to high pressure region it collapses
rapidly. This is the phenomenon of cavitation which occurs
in many aspects of fluid flows in hydraulic machinery such
as hydraulic valves, and pumps. Experimental investigations
have shown that the collapse of a bubble in the vicinity of a
rigid surface is accompanied by a high speed water jet which
is formed from the far side of the bubble. This liquid jet
treads (hrough the bubble and impinges on the rigid surface
(Gibson (1968), Soh & Yu (1991)). This continuous
impingement of high momentum micro-jet is believed to be
the main cause of cavitation damage on surfaces.

In the case of underwater explosion, rapid local
boiling of water due to high energy input generales a large
vapour bubble which has a displacement compatible to that
of its target ship. The growth and collapse of this bubble
impost adverse distribution of bending moment in the hull
and thus cause structural damage to the ship. The water jet
which follows the collapse of the bubble will generate high
impact on the hull.

Most computational and analytical researches have
been carried out with the assumption of either a constant
vapour pressure inside of the bubble (Blake, Taib and
Doherty (1986), Kucera & Blake (1988), Taib (1985)) or
pressure change following simple gas laws (Kumar &
Booker (1991) ). These assumptions ignore the process of
energy transfer in the vapour in which latent heat is an
important factor.

A computer simulation of a cavitation vapour bubble
is carried out by using the boundary integral equation
technique to show the collapse and rebound phases of the
bubble above a rigid surface.

The release and the absorption of latent heat in the
bubble will effect the pressure and the temperature of the
vapour, the dynamics of the bubble and therefore the
hydrodynamics of the flow around the bubble. In tis regard
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the thermodynamic process inside of the bubble can not be
ignored ( Soh & Shervani Tabar (1992) ).

A computer model which incorporates empirical
thermodynamics properties of the vapour is used to describe
the thermodynamic process inside of the bubble. The
simulation of condensation and vaporisation of water is
brought about by a formulation which is derived from the
First Law in Thermodynamics for control mass analysis
(Soh & Shervani Tabar (1992)).

This paper focuses on the relationship between of the
initial conditions and the dynamics of the vapour bubble.
The initial conditions consist of the following parameters:
maximum size of the bubble (R, ), vapour pressure in the

bubble when it is at its maximum size (Pyg), the ambient
temperature (T) and pressure (P,) and the distance of the
bubble froin a rigid surface.

FORMULATION

‘nergy E i0

The energy equation (First Law of classical
thermodynamics for control mass) for vapour in a cavitation
bubble is given by :

P, dV +p,V duy(P,) — ding [u,(P,) — u (T =Q dt
(1)

where V is the volume of the bubble; Py is the vapour
pressure, ug(Py) is the specific internal energy of the
vapour; up (1) is the specific internal energy of the ambient
liquid; my_ is the mass of the condensed liquid in the bubble
and Q is the heat transfer into the bubble,

The equation for conservation of mass is:

By assuming no heat transfer, the thermodynamic
process in the bubble (from equations (1) and (2)) becomes:

P, dV+d{p,VIu, ) ~u (M} =0 o
‘Thie idiod s Funtion:

The surrounding liguid of the bubble is assumed to be
a potential flow domain (). If ¢ is considered as the

velocity potential, the Green's integral formula (Wrobel &
Brebbia (1980) ) is given by:
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where S is assumed to be a picce-wise siooth surface of the

bubble, p is the any given point in the domain Q, g is a

point on S and C(p) is 2rt when p is on the surface S and 4r
otherwise,

The unsteady Bernoulli's equation, in Lagrangian form,
is given by:

P -P 1
~D—¢=°—V+--IV¢I2 +gz
Dt p 2 (5)
where P is the ambient pressure and Py, is the vapour
pressure in the bubble.

DISCRETIZED APPROXIMATION

The surface of the vapour bubble is approximated by N
elements. In each of these element the potential and its
normal derivative are constant (see Figure 1). The mid-
points of the elements are designated as collocation points
p; and g; are points on the surface §.  Thus for p; w lie on

the surface of the bubble, the integrals in equation (4) are
sectionalized give the following expression:
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Denoting the velocity component normal to the surface
by v, equation (6) becomes a system of linear equations in
the forn:

N N
2“¢i+inj ¢ = Z Gy ¥;

F= ] _] = 1
! (7
Also by defining llij=EU.+2:t8iJ. (Bijzl ,ifi=j &
5ij=0'u , il i#j ) equation (7) is further simplified into a

matrix expression:

[H] [(D] = [G] [UJ] (8)

From equation (8) the normal velocity on the bubble
surface W can be calculated for every given distribution of
velocity potential ¢.

The tangential velocity, 1, is approximated by the
formula;
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The termn dJj is the length of element §j - The discretized
form of Bernoulli's equation for calculating the velocity

potential, allows the velocity potential to be time-marched
over a time increment of At:

[diderar = [dy) + At {%[\Iﬂz + n2]

(10)

The collocation points, p; , is a vector in a cylindrical
coordinates system (rj, ;) and are time-marched according to
the Euler formula:

rilt+ At = () + u; At + O(AL) (11)

z(t + AD = (1) + v; At + OA)

Here the velocity vectors (uj, vy) are derived from the

velocity components which are normal to the bubble
surface,yj, and tangential to itn;.

The discretized form of equation (3) for calculating
vapour pressure inside of the bubble is given by:

AV A{p,luy(P,) —u (T}
V " P+ pylug(P) —uy (T)] -

Thus the change of volume, AV, will allow Py, to be
evaluated from (13).

RESULTS AND DISCUSSION

The pulsation of a vapour cavity bubble near a
horizontal rigid floor is carried out using the above
computation technique. The aim here is to investigate the
rebound of the bubble in relation to the penetrating water jet
under various ambient temperature and pressure.

A sample of the calculations is shown in Figure 2,
The calculation begins from a bubble at its maximum
volume which is spherical in shape. The bubble is initially
at a distance 1.5 times its maximum radius, Ry, and its

initial vapour pressure, Pyg, is 3.75kPa. The ambient

pressure (Po) and temperature are 5kPa  and 309C
respectively.  The computed results shows that the bubble
under goes two cycles of collapse and rebound.  The
formation of liquid jet is a continuous process which is
independent of the direction of growth of the bubble. It
becomes very prominent at the end of the second pulsation.
This gives more detail description on the evolution of the
liguid jet in which many experiments have observed at the
end of the second pulsation of the bubble.

The change in volume of the bubble is shown in
Figure 3. Although the shape of the bubble continue to
deform, the bubble has recovered its initial volume at the
end of each rebound. This is expected in the framework of
energy conservation. The increase of pressure in the bubble
is synchronized with the reduction of volume as shown in
Figure 4. It must be noted that in effect due to latent heat
has resulted in a maximum pressure much higher than that
predicted from the calculation which assumes polytropic gas
law to be followed by the vapour.

Figure 5 illustrate the effect of varying the initial
vaour pressure in the bubble. By reducing the initial vapour




pressure, the times for the bubble to collapse lengthened
while the sizes of the collapsed bubble increased. As shown
in Figure 6, the increase in the fluid ambient temperature
shorten the collapse times but has very small effect on the
change of volume of the bubble. Qualitatively, the
momentum exerted by the bubble on the rigid surface can be
estimated from the rate of volume reduction during the
collapse of a bubble. Rebound of the bubble is most likely
to occur for a bubble which has a higher initial pressure. In
other words, a bubble which over-expands (having a lower
pressure at its maximum size) will deliver a stronger
momentum onto the rigid surface.
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Figure 2 The pulsation of a vapour bubble.
The broken line represents the position of the
initial bubble.
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Figure 1 Schematic diagram of the
computation domain
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Figure 2 (continued) The pulsation of a vapour bubble.
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Figure 3 The change of bubble volume versus time;
showing two pulsations.
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Figure 4 The variation of pressure in a bubble.
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Figure 5 The pulsation of bubble as shown in volume

changes versus time at an ambient condition of 250C,
and 5kPa; the bubble is 1.5 times its maximum radius
above a horizontal rigid surface. Initial vapour pressure:
A=1kPa; B=2kPa; C=2.5kPa; D=3kPa; E=3.5kPa and
F=4kPa.

o8

Y/i¥max

o6

02
i

HONDIMENSIOHAL TIME

Figure 6 The pulsation. of bubble as shown in volume
change versus time at an ambient pressure of 5kPa and
an initial vapour pressure of 2.5kPa and 1.5 times its
maximum radius above a horizontal rigid surface.
Ambient temperature: A=15°C; B=20°C; C=259C;:
D=27.59C and E=300C,




