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ABSTRACT

In this paper a numerical technique is used to study
the flow of a Bingham plastic confined between concen-
tric cylinders with the inner cylinder rotating. The pa-
rameters of the problem are chosen so as to produce a
plug interface, and the Bingham plastic is modelled as
a bi-viscosity fluid. The position of the interface is es-
timated numerically, as is the flow field in the yielded
region. The method of false transients is introduced to
accelerate the numerical convergence and the equations
are discretised with central differences in both time and
space. The resulting system of equations is solved using
a judicious mix of SOR and an ADI scheme. Using a
projection to zero mesh size, good agreement is obtained
between the numerical estimates and the analytic solu-
tion for cylinders of infinite length. Numerical results are
also presented for finite cylinders with stationary lids,

INTRODUCTION

This work has its genesis in the study of the flow
of clay slurries in a hydrocyclone. It was observed that
unless additives are introduced into the flow regime to re-
duce the effective viscosity there is little or no separation
(Horsley and Allen 1987, Horsley et al 1992). The addi-
tion of thinning agents tends to change the constitutive
properties of the original medium which is a processing
technique but tells us very little about the flow field, One
possible explanation for the lack of separation in slurries
with a significant yield stress may be due to the fact that
the spin-up in the hydrocyclone is not sufficiently strong
in the cases studied. To date, little is known about the
flow field, or whether there is a plug interface. A numer-
ical approach can yield estimates of the position of the
interface, but the lack of exact solutions makes it diffi-
cult to check the computational accuracy and there are
no experimental data since the opaqueness of the slurries
makes observation impossible. In an attempt to throw
some light on the subject we proceed, as a first step, to
consider the flow of a yield pseudo-plastic in a simplified
geometry.

It has been observed by several authors (for exam-
ple Nakamura & Sawada 1987, or Tanner and Milthorpe,
1083) that slurries may be modelled as a Bingham plas-
tic. In such flows. regions in which there is no shear strain
rate (the plug) and an adjoining region in which there is a
strain rate (yielded region) are often encountered. Flows
confined between boundaries of various geometries have
been studied by many authors. but analytic solutions for
these types of flows are not readily available and recourse
has to be made to numerical techniques. In this paper
we use a bi-viscosity model to approximate the character-
istics of a Bingham plastic confined between finite con-
centric cylinders with the inner cylinder rotating. The
motion is assumed to be axi-symmetric and steady state
solutions only are sought. The parameters of the problem
liave been chosen so as to produce a plug interface. The
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method of false transients is introduced to accelerate tiw
numerical convergence and the equations are discretised
with central differences in both time and space. Using
an ADI scheme, it is found that the convergence rate is.
in general, slow and depends critically on the choice of
the artificial time constants. However, a judicious mix
of SOR and the ADI scheme gives faster convergence in
most cases.

The program was run initially with periodic bound-
ary conditions in the axial direction so that solutions for
infinite cylinders could be obtained. Good agreement 1s
obtained between the numerical estimates and the ana-
lytic solution for this case. The method is then extended
to the case of finite cylinders with stationary lids.

MATHEMATICAL FORMULATION

The constitutive equation for a Bingham plastic
linking the deviatoric stress tensor and the rate of strain
tensor has been described by Oldroyd (1947) and is rep-
resented here by the relationship
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in which 7;; is the stress tensor, j, is the plastic viscosity.
o is the yield stress, ¥ = ,/2ejje;; is the shear rate,
eij is the rate of strain tensor, and the scalar product
7 : 7 is the second invariant of the deviatoric stress
tensor. It is noted that the stress tensor is defined only
for % (r :7) > 72 which means we cannot know what the
stress distribution is in the region of the unyielded flow.
One assumption taken is that the stress is continuous
from the yielded flow region right up to the plug interface.

The equations of motion are valid in the region
where the fluid has yielded. However, as observed by
Tanner and Milthorpe (1983) it is inconvenient to at-
tempt to distinguish between a state of stress and one
of absolute rigidity (4 = 0) and equation (1) cannot be
imposed numerically. We therefore find it expedient to
adopt the idea expounded by them and replace equation
(1) by a bi-viscosity model, viz.
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where 4. is a predetermined quantity. By keeping 7.
small we are effectively replacing the unyielded region by
a very viscous fluid.

Although we are interested in the steady state solu-
tion, Mallinson and de Vahl Davis (1973) observed that
if a unique steady state exists, it may sometimes be ob-
tained more efficiently by introducing fictitious transient




terms into the equations of motion. Cylindrical coordi-
nates (r, 8, z) with corresponding velocity vector (u,v,w)
are used to exploit the axial symmetry in the problem,
but instead of solving for the primitive variables, the
problem may be formulated in terms of the azimuthal
component of the vorticity
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and the Stokes stream function defined by
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This formulation bypasses the difficulties associated with
the imposition of pressure boundary conditions. The
method was successfully used by Hughes, et al (1984)
in studying Newtonian flow between rotating cylinders.
Adopting this method, using Q7! (2 being a convenient
angular velocity) as the time scale, and the annular gap
between the two cylinders as the length scale L, the non-
dimensional equations of motion are
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in which Re, = pLV/u, is the Reynolds number based
on the plastic viscosity, p is the density, V is a typical
velocity, and the a’s are the fictitious time constants.
Also in equation (4), the term in brackets on the right
hand side can be expressed as
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in which W, = 7,L/(1, V) is the Weisenberg number.

The above equations are replaced by a central dif-
ference scheme by imposing a mesh over the flow region.
The resulting set of linear equations is solved using a
method due to A.A. Samarskii and V.B. Andreev, as de-
scribed in Mallinson and de Vahl Davis (1973). As is
shown below, great care has to be taken in interpreting
the results of the computation and a double projection
has to be done to obtain the velocity profile.

BOUNDARY CONDITIONS

If | denotes the length of the two cylinders with
internal and external radii R; and R, respectively, the
boundary conditions on the stream function are the same
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whether [ is finite or infinite. For the finite case, we as-
sume 1 is zero on all boundaries. In the infinite case
the assumption that a steady state exists means that the
only non-zero component of velocity is in the azimuthal
direction which means that v is identically zero every-
where. If £; and 2, denote the angular velocities of the
inner and outer cylinder respectively then

[(R;,8,2) = R,  T(R,,6,z) = R2Q,, (6)

and assuming no slip, the boundary conditions at the
ends are given by

T(r,0,+1/2) = 0. e

The boundary condition on the vorticity field is obtained
by expanding in a Taylor series giving
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where subscript » denotes the value of the quantity on
the boundary while subscribe 1 denotes the value of the
quantity a distance h from the boundary in the flow re-
gion. In the numerical scheme below, h is the mesh size
used for the discretization.

When [ is infinite, periodic conditions on I' and ¢
are used [see for example, Dinar and Keller (1988)].

CYLINDERS WITH INFINITE ASPECT RA-
TIOS

The aspect ratio A, is the ratio of the length of the
cylinders to the annular gap. When A, is infinite, ana-
lytic solutions are obtainable and it is possible to check
the accuracy of the numerical procedure. It is convenient
to set one of the cylinders at rest while rotating the other
ome. The position of the interface is unaffected so long
as the angular velocity has the same magnitude. In ot
implementation therefore, we arbitrarily set (g to zero.

The analytic solution for an ideal Bingham fluid is
well known and its velocity distribution is given in di-
mensionless form by

vp =1 W, {log(r/rg)_%(lfrg/'rz)], R; < r<irg, (9)

in which r, is the plug radius. On the inner cylinder
equation (9) yields

Q= W, [log(R,/ro) - %(1 - ;%/R’f)]. (10)

For a given choice of W, the true plug radius can be cal-
culated from equation (10). Now, using the same solution
method the equations for the biviscosity model can also
be solved giving
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i which 7. is the radius at which ¥ = %.. When 4. = 0
the first of equation (11) becomes equation (9), otherwise
equation (11) always gives higher velocity values than
equation (9). The discrepancy vanishes as 4. approaches
zero. Equating velocities at r = r. yields the relation
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Fig. 1 Plot of ¥, against r. for three different mesh
sizes: A (h =.005), B (k= 0.01) and C (h =0.02). The

projections to zero mesh is shown by the dotted line for
r. and the dashed line for r,.

which is useful for checking purposes. Another useful
juantity is the non-dimensional stress, scaled by 7o so
‘hat it is unity on the plug interface, given by

(),
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If r = r; when 7 = 1, we may use r; as another estimate
for the plug radius.

In the numerical procedure, we set W. = 6.05,
2 = 0.5 and Re, = 53.2. The radii of the cylinders
are set at 0.1 andp(].ls metres so that L = 0.05 and the
dimensionless values are B; = 2 and R, = 3 and using
equation (10), this gives a plug radius of 2.6. Using (12),
it is easy to show that dyc/dr. < 0 and that Ae =5 )
at r. = 2.6. Using equations (3) to (5) the numerical
procedure actually overestimates the value of r. so that
given a ¥, the value of r. is equal to r, + ¢ for some small
¢ > 0. This means that numerically, r. will give an over-
estimation for the true plug radius and this gets worse
as 9. approaches zero. However the error is uniformly
less as the mesh size is reduced. F igure 1 gives a plot of
Ye against r,. h is taken as 0.02, 0.01 and 0.005 and in
each case 4. takes on the values 0.003, 0.002 and 0.001.
The limiting values of 7. as 4, — 0 for each mesh size are
used to project to zero mesh size, giving the estimated
plug radius as 2.615 which is accurate to within 1%. This
is given by the dotted line in the figure. On the other
hand as 4. changes over the above range, for each mesh
size, ry remains unchanged to 4 significant digits, and in
each case is nearer to the true plug radius although it is
still an overestimation. Projecting the value of r, to zero
mesh gives the estimated plug radius as 2.61. The result
is also shown in Figure 1. It is clear from the figure that
r¢ gives a much better indication of the position of the
plug interface,

The numerical procedure underestimates velocitics
consistently and lowering 4. increases the divergence
from the correct values. In fact, by differentiating the
first of equation (11) we can show that dv/d4. > 0, which
is in agreement with the above result. However, reduc-
ing the mesh size brings the velocity uniformly nearer
to that predicted by equation (9) which again suggests
that a double projection is required. For each mesh size,
the limiting value of the velocity is obtained by project-
ing . to zero. Since the velocity v, for the ideal Bing-
ham fluid is known, an analysis of the numerical errors
for each mesh size may be made. The results suggests
an error of O(h''") near the inner cylinder increasing to
about O(h'®) near r = r.. The error of the procedure
therefore appears to be better than linear. The limiting
velocity obtained for the three different mesh sizes are
projected to zero mesh size using a Richardson extrap-
olation scheme of second order and the resulting veloc-
ity vr is compared with v in Table I below. The above
method gives close to three significant figure accuracy for
the yielded flow near the inner cylinder. The accuracv

(13)
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reduces as the plug radius is approached which is what
we expect since the biviscosity model will always have
velocity decaying to zero only at the outer cylinder. An
important observation is the fact that, numerically the
bi-viscosity model cannot give accurate velocities if one
chooses a fixed 4., however fortuitous the choice may be.
Tanner and Milthorpe (1983) attempted to find an “opti-
mal” constant value of 4. by numerical experimentation.
There is no optimal value in the case discussed here as
large value of 4, appears to give “better” values of veloc-
ities, but not r., so that the double projection method
appears to be the only one at present available which
ensures accurate results. Further the limitations of com-
puter performance which may have encouraged Tanner
and Milthorpe to use a constant 4, are being quickly re-
moved, so that whilst the method proposed in this paper
is expensive, it is not inordinately so and should be used
in research.

Table I. Velocity profiles

i Vy v v Vp vy
2.0 1.0000 1.0000 2.6 0 0.0002
2.1 0.6717 0.6715 2.7 0.0001
232 0.4165 0.4159 2.8 0.0001
2.3 0.2273 0.2265 29 0.0000
24 0.0982 0.0972 3.0 0
2.5 0.0239 0.0235

CYLINDERS WITH FINITE ASPECT RATIOS

The same parameter values are taken as for the pre-
vious section but now equations (7) and (8) are applied
on the top and bottom lids. Assuming axial symmetry,
the flow depends on r and z only. One disadvantage here
is the fact that there are no theoretical results with which
to make comparisons. However when the aspect ratio is
large, we expect that the azimuthal velocity profile along
the centreline of the cylinders will be close to that for
the case of infinite aspect ratio. In fact, when A, = 6
the velocity profile along the centreline agrees with that
of v; in Table I to two decimal places.

We now use a slightly different method to estimate
the location of the plug interface. The method is sug-
gested by the steadiness in the value of r; as noted in the
previous section. In all the runs made, the value of r,
along the centreline of the cylinders changes very slowly
and is constant to 4 significant digits for each mesh size
provided 9. is small enough. This is true for 4, < .003. It
is therefore sufficient to make one run at each mesh size
and record the value of r;. These values are then pro-
jected to zero mesh size to give the position of the plug
interface. Figure 2 gives the estimated plug radii along
the centreline of the cylinders for three different aspect
ratios. Decreasing the aspect ratio draws the plug inter-
face closer toward the inner rotating cylinder.

@
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Fig. 2 Plot of the mesh size h against r, along the
centreline of the cylinders for aspect ratios 1,3 and 6 as
labelled.




In fact, the projection to zero mesh size can be done
along the entire length of the cylinders giving the esti-
mated plug interface shown in Figures 3 and 4. We note
that the method is inappropriate if we want to obtain
the velocity fields since a double projection would be re-
quired as in the previous section.

OUTER CYLINDER

INNER  CYLINDER

2.4 2.8

2.0

Fig. 3 The stream function map for A, = 1. The esti-
mated plug interface is the right boundary curve.

The axial and radial velocities are best shown by
looking at the stream function maps. To obtain good
estimates of the stream function values, we suspect that a
double projection as was done for the azimuthual velocity
field in the previous section would be required. This is

0.012

plug

INNER  CYLINDER

OUTER  CYLINDER

2.0 3.0

Fig. 4 The stream function map for A, = 3. The esti-
mated plug interface is the right boundary curve.
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ongoing work and will not be reported here. Instead, we
note that a good qualitative picture of the flow field can
be gleaned from the contours obtained for a low value of
%Y. This is shown in Figures 3 and 4 for aspect ratios of
1 and 3 respectively. In each case, there appears to be
two weak cells as expected.

DISCUSSION

Whether the aspect ratio is finite or infinite, the
rate of numerical convergence is highly sensitive to the
choice of values for the set of artificial time constants = =
{az,as,a:} in equations (3) to (5). Typically, a ‘wrong’
choice of values for this set may cause the iterations to
diverge. When it looks as if convergence might occur, the
rate is very slow. For a suitable set of values for =, the
iteration may slowly appear to converge for a while and
then start to diverge. One option is to save all parameters
and stop the process at this turnaround stage, effect a
change to the set of values and continue the iteration.
We have found that replacing the solution for one of the
field variables by an SOR scheme gives faster convergence
and this was exploited where possible. For the finit
cylinders, it is faster still if, when the iterations appears
to be slowly converging, the vorticity and stream function
fields are calculated by SOR schemes. Depending on the
mesh size, between 3000 to 5000 iterations are required
for each point on the 4. — r. curve of Figure 1.

As mentioned earlier, this is an ongoing project and
one way to obtain more accurate estimate for the flow
field for finite cylinders is to map the yielded region onto
a square say thereby allowing the field parameter to be
calculated at a sufficient number of points to make the
contour plot more accurate. A logical extension to this
project is to study the onset of multiple solutions by in-
creasing the rotation speed.
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