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ABSTRACT

The stability of weakly compressible (Convective Mach
number ~0.3) three-dimensional round jets and their tran-
sition to turbulence is studied by means of a Direct Nu-
merical Solution (DNS) technique. Temporal simulations
arc performed for axisymmetric jets with jet-centerline
to ambient density ratios in the range 1 to 1/8. Added
to each component of the initial jet velocity profile is a
small random perturbation with an rms value of 0.3% of
the jet-centerline velocity. The white noise perturbation
allows the most unstable mode to grow naturally (under
the constraint of enforced streamwise periodicity). Iso-
surface visualisation of two-point pressure correlations is
introduced which allows the nature of the instability to
be investigated more casily.

INTRODUCTION

The stability of axisymmetric jets have been investigated
extensively (e.g., Michalke and Herman 1982, Monke-
witz and Sohn 1988 and Martin and Meiburg 1991). The
ratio of jet-centerline to ambient density, (S), is an impor-
tant parameter in determining the stability regimes of the
round jet. According to Monkewitz and Sohn (1988), in
jets with a top-hat density profile and zero Mach number
the first azimuthal mode is absolutely unstable when §
is smaller than approximately 0.35 and the axisymmetric
mode is absolutely unstable for S less than approximately
0.66. Absolute instability is thought to be the cause of
self-sustaining global oscillations observed experimen-
tally, (Sreenivasan et al. 1989, Riva ct al. 1989, Monkewitz
et al. 1990).

The cffect of global density ratio on the non-linear
regime of the instability and subsequent transition to tur-
bulence is not well known and the numecrical investiga-
tion performed here allows these regimes to be investi-
gated. The stability calculations of Michalke and Her-
mann and Monkewitz and Sohn have been performed
assuming the jet flow to be locally parallel. Similarly, in
the calculations performed here the flow is initially paral-
lel. In addition, the streamwise boundary conditions are
periodic allowing the temporal evolution of the instability
tobe studied. The periodicboundary conditions enforce a
length scale on the calculation and thus the results cannot

-be directly compared to the stability analyses.
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NUMERICAL METHOD

The choice of numerical method is crucial for the suc-
cess of direct numerical simulations. The code used
here (see Gathmann and Chollet (1991)) is based on the
piecewise parabolic method (PPM) of Collela and Wood-
ward (1984) in combination with the linearised Riemann
solver of Roe (1981). The scheme performs well in advec-
tion dominated problems and handles travelling waves
very accurately. The diffusive source terms are included
in an additional operator and are combined with the PPM
scheme using time-splitting.

The Equations

The equations of motion written in conservative form are
W
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and Y is the mass fraction of jet fluid, used to allow casy
visualisation of the jet. The viscosity is given by a Suther-
land law,
14
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The Reynolds number is based on the jet diameter,
(2R), and values of velocity, density and viscosity at the
centre of the jet shear zone. The Mach number is based
on values of velocity and sound speed at the centre of
the shear zone. Defined in this way, the Mach number is
almost equivalent to the convective Mach number of Pa-
pamoschou and Roshko (1984). The Prandtl and Schmidt
numbers are set to unity and the thermal and species dif-
fusion coefficients (x and D) follow similar laws to the
viscosity, cquation 4.
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Initial and boundary conditions

The calculations are performed on a 60 x 44 x 44 grid with
dimensions of 8 x 3.5 x 3.5. The initial jet profile is that
used by Michalke and Herman (1982) with zero co-flow.
The profile is parameterised by R/ 6 and is
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where U is the jet centerline velocity, R is the radius at
which U(r) = Uy/2, and 6 is the momentum boundary
layer thickness. To a good approximation in the potential
core, (Crighton and Gaster 1976),

uem =2 (1 ®)

g ~100/(3x/R +4), (6)
where x is the downstream distance from the jet exit. This
relation gives a value of R/ 6 = 25.0 at the jet outflow. An
initial value of R/6 = 15.0 is used here as a result of
grid resolution constraints. Superimposed on the veloc-
ity profile (5)is arandom perturbation to all three velocity
components with a maximum amplitude of 0.5% of the
jet-centerline velocity. The mass fraction of jet fluid (Y)
is distributed in a similar way to eqn. (5) with a value of
1 at the jet centerline and zero in the free stream. The
initial density distribution also has a similar profile to (5)
modified by the Crocco-Busemann relation (see Schlicht-
ing 1979, Chapt. XIII). The initial pressure is constant
everywhere.

The streamwise boundary conditions are periodic and
the radiation side wall boundary conditions admit no
incoming travelling waves.

RESULTS

A Reynolds number of 2000 and Mach number of 0.3
were used for all numerical simulations and calculations
were performed on a Silicon Graphics Indigo worksta-
tion. To visualise the development of the instability into
the non-lincar regime iso-surface visualisation software
developed at CSIRO is used. Iso-surfaces of constant Y
(initially a cylindrical surface) give an indication of the
region occupied by the jet fluid and are the light coloured
surfacesin figures 1and 2. Iso-surfaces of low pressure in-
dicate where pressure fluctuations occur and once the in-
stability has developed are well correlated with regions in
the flow containing high vorticity. Pressure iso-surfaces
are dark coloured surfaces in figures 1 and 2.

Development of the Instability

Figure 1 shows a time sequence of the development of the
instability for the constant density jet. The initial instabil-
ity appears to contain a component of the axisymmetric
mode (or m = 0 mode) as seen in the pressure structures
observed at t = 2.0 and 6.0. However it should be noted
that these structures are often crescent shaped and their
axis is often inclined to the axis of the jet. Att = 2.0 vortex
lines are well-aligned with the low pressure structures.
By t = 6.0 the ring like structures have grown in size and
the first azimuthal modes, (m = =1 modes), are clearly
emerging especially in the left side of the jet. Att = 8.0
the predominant pattern is one of two counter rotating
spirals as seen in the typical ‘arms and legs’ pattern in the
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Figure 1: Development of jet instability for S = 1. (Iso-
surfaces of: Y (light) and Low pressure (dark). Times
t=2.0,6.0,8.0and 12.0.
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low-pressure structures at this time. Iso-surfaces of posi-
tive and negative streamwise vorticity are well correlated
with the low-pressure structures and occur in alternating
positive/negative pairs down the length of the jet. The
form of the pairing is consistent with initially axisymmet-
ric structures having tilted alternately, eventually joining.
The vortex lines also follow a similar pattern, suggesting
the same mechanism. At t = 12.0 several hairpin struc-
tures are all that are left of the spirals and are still well
correlated with regions of high vorticity. This evolution-
ary sequence was also observed by Fouillet (1991).

The development of the instability for the jet with
5=1/8 is displayed in figure 2. The evolution is similar
with an apparent axisymmetric component at early times.
This is followed by the appearance of m = +1 modes and
later time hairpin structures. The same general sequence
is also observed for 5 = 1/2 and 1/4.

TwofPoint Pregosu_re_C_o_r_relations

A better understanding of the nature of the jet instabil-
ity can be obtained from two-point pressure fluctuation
correlations. The pressure fluctuation is defined as

P(x,) = P(x;) - P(r) (7)

where 7 is the distance from the point x, to the jet center-
line and P(r) is the average pressure at this radius. For a
position x, and separation vector 8x = dre, + d8e, + dzk,
the two-point correlation is defined to be ’

C(xy, 8x) = P'(x,)P (x; + 8x). (8)

A single radius, 7, is chosen and C(x,, 6x) calculated for
one x, and each possible separation 8x. The calculation
is repeated for each x, in the cartesian grid that is 7 dis-
tant from the centerline and the results averaged to give
the average correlation, C(8x), for a scparation 8x. lIso-
surfaces of C($x) for r = 0.5 are plotted in figure3for S =1
and figurc 4 for 5 = 1/8.




Figure 2: Development of jet instability for S = 1/8. (Iso-
surfaces of: Y (light) and Low pressure (dark). Times
t =3.0,80,12.0 and 20.0
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Figure 3: Two-point pressure correlations for S = 1. Posi-
tive correlation (light), Negative correlation (dark). Times
t=20,6.0and 8.0

Figure 4: Two-point pressure correlations for S = 1/8.
Positive correlation (light), Negative correlation (dark).
Times t = 3.0, and 12.0
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There is a strong axisymmetric component to C in
figure 3 at t = 2.0. The crescent-like structures clearly
show good correlation with a streamwise wavelength of
4/3. As the instability develops, the crescents decrease
in angular extent and by ¢ = 6.0 form a pattern of spi-
raling ‘kidney-shaped’ surfaces. The m = 1 modes are
becoming evident at this time. Because no clear pattern
emerges in this particular computation the iso-surfaces
of C become less regular, although the m = +1 mode is
still seen at ¢t = 8.0 in the alternating surfaces of positive
and negative correlation. The growth of the instability in-
ferred from figures 1 and 3 is for the axisymmetric mode
to grow faster in the early evolution of the instability and
for the first azimuthal mode to take over as the jet en-
ters the non-linear regime. However there is no clear
delineation between the modes in the development of the
instability. This is consistent with the theoretical findings
of Michalke and Hermann (1982) which show that the
two modes have similar growth rates near the jet outflow,
and suggests that both modes are growing naturally at
early times in the constant density jet here.

For S = 1/8 the early time correlation iso-surfaces are
predominantly the m = =1 modes as may be seen in fig-
ure 4 at t = 3.0. The pressure correlation along the jet cen-
terline (not shown) gives a primary wavelength of 2.0. As
the instability develops, a double spiral pattern emerges
which is exceptionally clear by ¢t = 12.0, the remnants of
which are still visible at t = 25.0. The formation of such a
clear double spiral indicates that one of the first azimuthal
modes (either m = +1 or -1) dominates the other at this
time. If both m = =1 were of similar strength the pat-
tern would be an alternating series of oppositely shaded
surfaces, as is partially evident in figure 4 at t = 3.0. Al-
though this calculation was not continued past t = 25.0,
on the basis of the results for S = 1/2 and 1/4 it is as-
sumed that both m = =1 modes arise. Thus fora § = 1/8
the first azimuthal mode appears to be stronger than the
axisymmetric considerably carlier in the instability.

When § = 1/2 and 1/4, the development is similar
to 5 = 1, with the m = 0 mode growing more rapidly
initially and the m = =1 modes dominating at later times.
The spiral two-point pressure correlation surfaces that
develop evolve into a pattern consistent with both m = =1
modes being present.

Quantitative Aspects

Because of the enforced streamwise periodicity, the wave-
length of the fastest growing mode will depend on the
length of the computational domain. The domain here
is chosen to ensure several wavelengths are included to
allow free interaction of adjacent structures. Bearing this
constraint in mind, the wavelength of the fastest growing
mode appears to decrease with decreasing S, i.e. hotter
jets have a larger natural spatial wavelength in the tem-
poral calculations. For S =1and S = 1/2, A,,, = 1.33, for
S =1/4, Apux = 1.6and for S = 1/8, Ayu = 2.0.

A measure of the growth rate of the instability is ob-
tained by integrating the one-point velocity correlation
(referred to as the fluctuating kinetic energy, (E = U-U))
over the computational domain. The results are shown in
figure 5. The temporal growth rate of the total fluctuat-
ing kinetic energy decreases with decreasing density ratio
as does the temporal growth rate of (Y'Y') (not shown).
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Figure 5: Growth of E = (U'U') versus time for§ =1,1/2,
1/4and 1/8.
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Figure 6: Average centerline velocity for S =1, 1/2, 1/4
and 1/8.

The temporal growth of these quantities here corresponds
in some sense to their spatial growth in the physical jet
and suggests that decreasing S decreases the instability
growth rate. One possible explanation for this effect is
that the initial kinetic energy, (which scales as the jet den-
sity), is considerably lower in the heated jets and coupled
with the increased viscosity there results in lower growth
rates. However, this observation is contrary to the en-
hanced spreading observed experimentally in heated jets
(Monkewitz et al. 1990) and remains an unresolved point.

Except for S = 1/8, average jet centerline velocities
given in figure 6 show a slow decline and then a sharp
decrease once the instability becomes non-lincar. The
sharp decline corresponds to the region at the end of
the potential core. The calculation with S = 1/8 was
also performed with constant viscosity and indicated that
the different nature of the centerline velocity here is due
primarily to the effects of large jet viscosity.

CONCLUSIONS

The development of natural instability in the axisymmet-
ric jets investigated here does not appear to be signifi-
cantly affected by global density ratio except possibly for
S =1/8. Initially, for values less than 1/8, the axisymmet-
ric mode grows most rapidly but is soon overtaken by the
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first azimuthal mode. For the jet with § = 1/8 the first
azimuthal mode appears to dominate throughout the cal-
culation. The qualitative aspects of the later development
are similar in all cases and follow the pattern shown in
figures 1 and 2.

At no time were the creation of long lasting vortex
rings and their pairing observed, contrary to experimen-
tally observed, spatially developing jets. Although the-
oretical analysis suggests that the m = 0 and 1 modes
have similar growth rates, the nature of experimental
set-ups would favour axisymmetric perturbations rather
than the totally random perturbations used here to initi-
ate the growth of the instability. Calculations with pure
axisymmetric and axisymmetric plus random perturba-
tions are currently in progress.
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