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ABSTRACT: The accurate prediction of solute transport in long, shallow hillslopes is fraught with difficulties, when numerical
schemes are used. Most of the flow field will be uniform, however, when the length to depth ratio is greater than 20:1. This
facilitates the use of series solutions for the stream function and the velocity field to transform the flow domain to the unit square.
The transport equation is then solved using a series expansion, assuming a uniform flow field, and'transfonned back to the original
flow domain. This approach avoids the computation and numerical pitfalls associated with solving the transport equation in the
original flow domain. Solutions in both flow domains are presented and the results discussed.

1 INTRODUCTION

An understanding of hillslope seepage is important in
managing and conserving the quality of surrounding
landscapes and water resources. Increases in groundwater
recharge can result from the clearing of large vegetation and the
introduction of irrigation schemes, thereby producing a higher
water table elevation. Solute transport occurs when the
elevated water table mobilises salts from reservoirs, located in
the newly saturated zone. The mobilised salts are then
advected and dispersed in the aquifer, and may eventually be
transported to the surface at the seepage face. Efficient land
useage and conservation requires quantitative knowledge of the
diffusion and advection processes of the solute through the
saturated zone.

Two equations govern solute transport in porous media,
namely the flow equation and the mass transport equation.
The flow equation determines the seepage velocities, while
solute concentrations are obtained using the mass transport
equation. The velocity field can be determined continuously
throughout the entire saturated flow domain, by using a series
expansion of the velocity potential (Powers et al, 1967; Powell
and Kirkham, 1976). In the past, series solutions have been
severely restricted by the necessity for a horizontal lower
boundary. However, the least squares methodology has been
applied to the problem (Read and Volker, 1990: Volker and
Read, 1990), enabling series expansions for arbitrary bottom
geometry to be obtained.

Unfortunately, accurate numerical solutions for mass
transport can be extremely ditficult to obtain, due to numerical
dispersion. This problem is compounded in the hillslope
context, where large aspect (i.e. length to depth) ratios of 50:1
or 100:1 are common. and any numerical solution, whether
accurate or not. is usually obtained at a high computational
cost.  Analytical solutions for contaminant transport are
available for infinite flow domains, (Hunt. 1983) when the
seepage velocity is constant. Although solutions of this type
are not directly applicable to the hillside problem, they avoid
the common pitfalls encountered by numerical schemes.

The simplified soil horizon for a general hillside seepage
problem is depicted in Figure 1. For large aspect ratios
(greater than 20:1), Volker and Read (1990) have shown that
the seepage velocity is uniform for most of the saturated flow
domain. Based on this feature of hillside seepage, and using a
series solution for the seepage velocity, this paper develops a
method for transforming the contaminant transport problem to
a square flow domain, with coordinate axes parallel and
perpendicular to the direction of the seepage velocity. An
analytical solution on this finite domain is then obtained for the
solute concentrations, using a series expansion.

1289

Section 2 provides a formal mathematical description of the
hillside seepage problem, while Section 3 outlines the least
squares method used to obtain the series expansion for the
velocity potential. Section 4 details the transformation process
and the series expansion for the solute concentrations, while
some representative analyses are presented in Section 5.
Finally, the method and results are discussed in Section 6.

2 FORMAL PROBLEM DESCRIPTION

Solutions for the flow equation and the transport equation
are necessary to obtain solute concentrations throughout the
flow field. The flow and transport equations must be solved
subject to the imposed boundary conditions, on the flow
domain (Figure 1) and the transformed flow domain (Figure
2), respectively.
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Figure 1 )
The hillside seepage flow domain. Dotted sloping lines are
streamlines, indicating 10%, 30%, 50%, 70%, and 90% of the
flow. Vertical dotted lines are equipotential _lmcs, indicating
10%. 30%, 50%. 70%, and 90% of the potential range.

In Figure 1, AGFD forms the impermeable boundary,
consisting of the vertical boundaries AG, FD and the sloping
lower boundary GF. Fluid moves from the unsaturaigd zong
above the water table CE, through the saturated aquifer and
seeps through the lower section of the soil surface, AB. The
seepage face AC consists of two sections, separated by the

stagnation point B. Fluid flows across the seepage face AB.
while the fluid velocity is essentially parallel to section BC:
that is, there is no inflow or seepage across the soil surface
BC. Technically speaking. the seepage face consists of AB,
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FigEre 2
The transformed flow domain. The sloping dotted lines
delineate the boundaries of the uniform flow region, while the
dotted line CE indicates the transformed water table

not AC. By convention, however, the upper limit of the

seepage face is taken as the intersection of the water table and
the soil surface.

The transformation to the curvilinear coordinate system
(&,£) maps the points A, B, C, E, F, G in Figure 1 to the

corresponding points in Figure 2. The & coordinate is
measured along a streamline (parallel to the direction of fluid
flow), starting at the outflow section of the seepage face (AB

in Figure 1). The { coordinate is measured along the
equipotential lines (perpendicular to the direction of fluid

flow), starting at the impermeable boundary (AGFE in Figure
1).

2.1 The Flow Equation

Seepage through saturated, permeable soil is governed by
Darcy's Law. Assuming the soil is homogeneous and
isotropic, the velocities U,V in the x,y directions are given by

Ux,y) = - K d¢/ox,
(N
V(x,y) = -K d¢/dy

where @(x,y) is the hydraulic potential and K is the constant
hydraulic conductivity. For an incompressible fluid,
application of the continuity condition leads to Laplace's
equation, in the fully saturated zone ABCEFG (Figure 1):

92¢/0x2 + 92¢/dy2 = (2)

The boundary conditions along the saturated flow perimeter
consist of a combination of velocity and potential forms.
Along impermeable boundaries AG, GF, DF, the normal
velocity is zero:

ag/dm =10 (3)
where m is normal to the boundary. When the impermeable
boundary is vertical (AG, DF), this condition reduces to:

ag/dx =0 (4)
The upper saturated flow boundary v, (x) (ACE) is
permeable, and consists of a seepage face f(x) (AC) and water

table n(x) (CE) For steady recharge along the water table, the
surface potential along the seepage face (y,(x), 0 < x <x;) and
the water table (y,(x), x, < x <3) is equal to the elevation
above an arbitrary datum:

— ) = PHX) S0 <x <y
) =) ) .x <xss

()
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where x; is the x coordinate of the intersection of the seepage
face, and s the horizontal base length. For recharge r = K.R
along the water table, conservation of mass stipulates that

R = 0¢/dy — n'(x).0¢/ox (6)
These boundary conditions applied to the equation of
continuity, fully define the steady seepage through the
hillslope.

2.2 The Transport Equation

The equation for solute transport in the saturated region

ABCE (Figure 2) of the transformed flow domain can be
expressed as (Hunt, 1983):

9, ,dC ad oC _oC
_[D‘,’__]-pi{D;a_C]_u—:a— )
95 95 9L “of  9f &

where C(,{,1) is the concentration of the solute (mass per unit
volume), D¢, D¢ are the components of the dispersion tensor

D, and u is the magnitude of the pore velocity. The dispersion
tensor D is given by

D¢ = o, Dy = ogu )

where o is the longitudinal dispersivity in the direction of
fluid velocity, e is the lateral dispersivity normal to the
direction of the fluid velocity. Note that the dispersivities o

and o are constant with respect to time and position.

The boundary conditions for solute transport need to be
described along the impermeable boundary (AE), seepage face
(AB and BC') and water table (C'E). At the lower
impermeable boundary AE there is no flux across the
boundary; as the normal velocity is zero, the boundary

condition for C(&,{,r) along AE is

D8C=0

aC )

Along BC, the normal component of the velocity is zero, and
the soil surface acts as a boundary between the saturated region
and the atmosphere. Modelling the atmosphere as a gas
continuum (Bear, 1979), with no dispersion across the
boundary, the boundary condition reduces to Eq. 9.

Along the water table CE, the boundary acts a division
between unsaturated and saturated flow regimes. Assuming
the unsaturated zone can be modelled as a gas continuum, the
net flux across the water table will be due to advection only.
Similarly, the seepage face acts as a boundary between the
saturated zone and the atmosphere, and once again the net flux
will be due to advection only. Hence, the boundary conditions
along AB and CE reduce to (Bear, 1979):

ac

—

D
sag

0 (10)

Initially, there is no solute in the saturated flow region,
apart from a rectangular region of constant concentration C,
downstream from the water table. At ¢ = 0, the concentration

C(&,£.0) =CYE&,D) is given by

CYUED=Co, G088, L8

= (), otherwise.

(an

These initial and boundary conditions applied to the solute
transport equation fully define the transport process.
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An analytical solution for the hydraulic potential and hence
the seepage velocity can be obtained by applying the method of
separation of variables. The appropriate truncated form of the
series expansion, for the given boundary conditions is:

N
Hﬂ}f -
o) =co+ Y (0™ + bre™)eos BEX
1 S
n=

(12)

The bottom boundary condition (Eq. 3) determines the
relationship between a, and b,. This boundary condition can
be expressed concisely as

Ppx) = 0.co+ Y, WoW)a, + ¥, VE)b, =0
n=1 n=1

(13)
where
b () = BEX |, £ () sip A7EC),MTAX)
in(x) —;n(cos o5+ fp(x) sin mT—}e G
and (14)

i S -nafix)
vi(x) = - l;n[cos R _ fi(x) sin ﬂf—x)e ’m{ -

The two sets of basis functions Z2(x) and ¥2(x) form a linearly
dependent spanning set, and the least squares method can be
used to eliminate this dependence. After some simplification,
the relationship between the basis functions can be represented

by an NxN system of equations in (constant) /i

£y 5

N
TPV dx =Y, hy|  TROTP() dx
k=1
0

(15)
0

This set of NxN simultaneous equations can be solved for /1;.

The series expansion for the hydraulic potential can now be
expressed concisely as

N
¢(.’C,)‘) = 2 (:nwn(xv}‘)

n=0

(16)

where wy(x,y) = 1,

and (17

N
nmy —nmy .
walty) = €5 = 2, hwe™s eos BEE for n = 1,....N.
k=1

Once again, the least squares technique can be used to
evaluate the coefficients ¢,, by applying the top boundary
condition for y,(x) (Eq 5). Minimisation of the squared error
in the top boundary leads, after some simplification, to (N+1)
equations of the following form:

& £

N
¢:(.’:)11-'j(.t) dx = Z Pt wh(x)w(x)dx
n=(0)

(18)

0 0

The sub- and super-script ¢ refers to the appropriate function
on the top boundary y;(x). This set of (N+1) simultaneous
equations can be solved for the c,, after a slight medification to
the surface potential.

The surface potential ¢(x) has a small discontinuity at the
downstream impermeable boundary (Klute et al, 1965), which
can be removed by using a cubic spline to take the surface
potential smoothly to zero slope at x = 0, without appreciably
affecting the surface potential.

This solution technique for the series coefficients cp
depends on the initially unknown water table location 717(x).

The boundary condition (Eq 6) that determines 7j(x) is both
-nonlinear and implicit, excluding any exact representation for

the water table. Numerical schemes such as the boundary
integral method overcome this problem by assuming an initial
position, and then iteratively improving it using the appropriate
boundary condition. Using a similar approach for the present
method, the water table is approximated by a cubic spline, and
the approximation iteratively improved using Eq 6.

4 SERIES SOLUTIONS FOR SOLUTE TRANSPORT

The contaminant transport problem in the (x,y) coordinate

system is transformed to the (£,) coordinate system, by using
the series expansion for the stream function and the potential
function. The stream function is obtained from the potential
function by invoking the Cauchy-Riemann equations:
B_ 4 v

dx dy ’ dy ox (19)

The (x,y) coordinates are then transformed to (&,0)

coordinates, by integrating the distance along the stream- and
equipotential lines, whose equations are given by the following
implicit relationships:
w(x,y) = const. , @(x,y) = const 20)
After the stream length and equipotential length have been
calculated, they are normalised, using the maximum stream
length and maximum equipotential length.

Once the solution is obtained in the (&,{) domain, the
inverse transformation is achieved by reversing this process.
The x coordinate can be determined approximately along the
bottom boundary ({'= 0, ) and the distance integrated along the

equipotential line, to height {. This estimate can be improved
iteratively, by integrating along the stream- and equipotential
lines using the estimated (x,y) coordinates. The estimated and

true values of (&,) are then used to obtain better estimates of
x.y).

The solution to the transport equation in the (£,£) domain is
obtained by first transforming the transport equation (Eq. 7)to
the heat equation. Application of separation of variables to the
resulting differential equation produces two ordinary
differential equations. Both equations are in self adjoint form,
and the problem is reduced to solving two Sturm-Louiville
eigenvalue and eigenfunction problems. The first boundary
condition (Eq. 9) leads to an infinite number of negative
eigenvalues, whereas the second boundary condition (Eq. 10)
produces one positive and an infinite number of negative

eigenvalues. The solution for the concentration C(&,8.1) is
given by

CLn = z Agncos mul e +

m=(}
0 oo
e"z 2 Apm(sin ané —
n=1 m=0

where pt = m?n2D g, v=u(2E-un)/4Dg and y=n’n?D¢ +m’n2D¢.

2nnDe
"

cos né) cos mug e (21)

The coefficients A, are evaluated from the initial conditions
(Eq. 11), by using the orthogonality relationship, after some
modification for the positive eigenvalue case.

5 RESULTS AND DISCUSSION

Solutions for solute transport have been obtained for a
hillslope of the form shown in Figure 1, with two sets of
dispersion coefficients D¢ and D . The flow domain consists
of sloping, parallel upper and lower boundaries (slope 0.05)
with an aspect ratio of 50:1, as shown in Figure 4. The
hillslope is subject to an applied recharge of 5.0x10-3K,
producing a steady water table and seepage velocity
5.0x10-2K in the uniform flow region. A rectangular block of
solute with initial concentration C, is located below the water

table in the (£,0) domain, roughly beneath the intersection of
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Figure 3

Solute transport in the (£,{) domain with (05, 0)=(5,0.01).

the water table and the soil surface, as shown in Figure 3.

The transformation process involves normalising the length
and depth scales. Additionally, the pore velocity is used for
solute transport, whereas the seepage velocity is given by the
solution to the flow equation. The relationship between the
two flow domains can be described, by introducing dispersion
parameters D", D", and time parameter 1* in the (&,()
domain. The relationship between these parameters and the
corresponding parameters in the (x,y) domain is given by

D*g =0D,/IK, D*g = 6ID,/d’K, £ =Kt/6l (22)
where 6 is the soil porosity, / is the maximum stream length, d

is the maximum equipotential length and D, D, are the
dispersion coefficients in the (x,y) domain.
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Figure 4
Solute transport in the (x,y) domain with (0, 05)=(5,0.01).

The dispersivities in the (x,y) domain are given in terms of
the dispersivities o0, and the pore velocity i (Eq. 8). In
terms of the dispersivities and the seepage velocity 1K, the
dispersion coefficients D*¢, D*, reduce to

D*e=ouJl, D* ¢ = orlud? (23)

The analyses presented show the solute concentrations in
the form of contours of dimensionless concentration (relative
to Cq) at varying times with two sets of dispersion
coefficients. Figures 3 and 4 show the solutions in both flow
domains for (a,.o) = (5.0, 0.01). For these parameters, the
longitudinal dispersion process dominates, so much so that the
concentration of the solute drops below 10%, shortly after
*=1. Figures 5 and 6 show the solutions in both flow
domains for (a,.a) = (1.0, 0.001). For this example, the
dispersion process is not dominant, with advection carrying
the solute through most of the soil before the concentration
drops beneath 10%, shortly after r*=12. In both cases,

. however, the solute concentrations drop sharply from the
initial 100% concentration to below 50%.
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Solute transport in the (&,£) domain with (oy,04)=(1,0.001).
6 CONCLUSIONS

Series solutions have been developed for solute transport in
hillside seepage, based on series solutions for the velocity
field. The solutions, although not exact for the entire flow
domain, provide an efficient means of estimating the extent of
solute transport. Accurate numerical solutions of the flow
equation are difficult to obtain, without large computational
expense, for the long aspect ratios characteristic of hillside
seepage. These series solutions overcome that deficiency and
also show that the flow is close to uniform over the majority of
the flow domain. This means that a transformation of the
domain into equipotential and streamline coordinates produces
a result ideally suited to analytical solutions of the transport
equation.

X
Figure 6
Solute transport in the (x,y) domain with (01, 05)=(1,0.001).
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