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ABSTRACT

This paper examines the flow when a sphere moves at
a constant velocity up the axis of a uniformly rotating fluid.
This is a classical problem in fluid dynamics, originally
examined in a series of experimental papers (Taylor, 1922).
Subsequent theoretical work has concentrated on the case
where the flow is assumed to be slow enough that inertial
effects can be neglected and the resulting linear equations
are solved either as an unsteady initial-value problem or
with viscosity included. In this study the equations for the
slightly viscous problem are to be solved numerically and
the results will be compared with the experimental results
for this case by Maxworthy (1970). This will enable a more
detailed examination of the flow than was possible in the
experimental study, due to visualisation difficulties.

INTRODUCTION

In the early 1920°s G.I. Taylor performed a series of
experiments on flow in a rapidly rotating reference frame,
where a body of fluid was placed in rigid rotation and then
perturbed by moving an obstacle relatively slowly (com-
pared with the rotational speeds) through the fluid. In
one of these experiments (Taylor, 1922), a ping-pong ball
was placed in a container of fluid which was then rotated
al a constant angular velocity until the entire system was
in rigid rotation. The ball was then pulled downwards
al a uniform speed through the container by an attached
thread. It was found that a column of fluid, with the same
diameter as the spherve, was pushed along in front ol the
sphere.

Taylor’s paper also presented a [amily ol solutions
for the steady inviscid problem, satislying the solid sur-
face condition on the sphere and tending a uniform flow
at infinity. Taylor also recognised that some of these so-
lutions would be unlikely to occur in a steady solution re-
sulting [rom an initial value problem in which the sphere
was started from rest. A further difliculty with the solu-
tions was that they represented a lavge disturbanee to the
motion, even il the sphere was moving very slowly.

Subsequent work attacked from the problem by two
different approaches, but mostly under the assumption that
the motion induced by the sphere was relatively small, that
is that the Rossby number in the problem is small. Under
these conditions the governing equations are linear. The
~ two approaches were to consider either the unsteady invis-

cid problem, or the steady viscous problem.
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The unsteady problem of a sphere brought into uni-
form motion impulsively from rest was first examined by
Grace (1926), who examined the solution for small times
and attempted to estimate the steady drag by extrapola-
tion. Stewartson (1952) reconsidered the same problem
and derived an analytical solution, written in terms of a
Laplace transform. For large times he outlined the asymp-
totic value for the drag and the form of the steady solution.
In this solution the axial velocity is constant within the
axial cylinder enclosing the sphere, with a decreased swirl
ahead of the sphere and increased swirl behind. A more de-
tailed examination of the unsteady solution was examined
for a related problem by Bretherton (1967).

Nonlinear effects for the inviscid problem have been
considered in papers by Long (1953) and Stewartson (1958),
based on the so-called “Long’s model” where a quantity re-
lated to the vorticity is conserved along streamlines (under
the assumption of an undisturbed flow upstream). In par-
ticular, Stewartson examined the conditions under which
a body of fluid was pushed ahead of the sphere and con-
cluded that this does not occur when the Rossby number
is large enough.

The viscous problem was apparently considered orig-
inally by Morrison & Morgan (1956), although the author
lias been unable to obtain a copy ol this report. Further
work was presented for the case of a sphere in a finite length
container by Moore & Saflman (1968) and later, in more
detail and including the case of an unbounded {luid. by
Moore & Saffman (1969). In these two papers the solution
was derived under the assumption that the Ekman num-
ber, which represents the importance of viscous eflects, was
small by using an asymptotic analysis. In particular, they
noted that the scale length of the upstream ‘blocked’ region
was inversely proportional to the Ekman number. Hocking,
Moore & Walton (1979) reconsidered the same problem for
“ong’ containers and noted the modifications in the drag
on the sphere due to the end walls, even when they are
very lar from the sphere.

The results from these theoretical papers were sup-
ported by two experimental papers by Maxworthy (1968,
1970). The first paper, which considers short containers, is
of less interest here than the second paper which demon-
strated the presence of a variety of phenomena in this prob-
lem. It is quite clear that both nonlinear and viscous ef-
fects were important in these [lows vel to date no detailed
numerical calculations have been performed for this con-




figuration in order to examine details of the flow. This
is particularly important since the experiments were un-
able to reveal fine details of the flow structure due to the
presence of the strong swirling motion which mixes any
dye which is released. The only numerical work which has
been performed for this problem, by Dennis, Ingham &
Singh (1982), is for a very viscous flow.

The following sections present details of the governing
equations for this flow and the numerical technique used to
obtain solutions of them for the parameter regime consid-
ered in Maxworthy (1970). At this stage only preliminary
solutions are available but they reveal the presence of three
important phenomena in this problem: upstream influence,
viscous separation and steady downstream waves.

GOVERNING EQUATIONS

This paper concerns the motion of a homogeneous
viscous fluid, with constant kinematic viscosity »=, in a
rotating fluid moving with constant angular velocity 0~ far
from the spherical obstacle of radius [*. The sphere rotates
with the same angular velocity and moves parallel to the
axis of rotation at a uniform velocity /*. The motion of
the fluid is observed from a reference frame rotating with
the fluid and moving with the sphere.

Two nondimensional parameters, the Rossby number
Ro = U*/Q*I* and Ekman number E = »*/Q*I"% can be
defined (Greenspan, 1968) and these determine the flow in
a nondimensional coordinate system based on the length
scale [*, time scale 1/Q* and velocity scale U*. Cylindrical
polar coordinates are used here, aligned with the axis of
rotation and with the origin at the centre of the sphere,
and the flow is assumed to be axisymmetric.

A stream function ¢ is introduced so that the velocity
components (u,w), in the (r, z) directions, are given by
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The equations of motion for the unsteady flow are then
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and V? is the usual Laplacian in cylindrical coordinates.
Here ¢ is the azimuthal vorticity component
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and v is the azimuthal velocity component, also known as
the swirl velocity. The boundary conditions applied on
these equations are that (w,w) tends to (0,1) and dv/dz
tends to zero for 1* 4+ :* > |, and that w = w = 0 on the
sphere at 24z = 1. The initial trials have been performed
with v = 0 on the evlinder but, for direct comparison with
the experiments, the rotation rate ol the sphere should be
such that the total azimuthal torque is zero.
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The parameter regime of interest in this study is that
with Ro <1 and E < 1, corresponding to slowly-moving
sphere in a rapidly-rotating viscous fluid. This is similar
to that examined in the experiments by Maxworthy (1970)
and as Ro tends to zero it corresponds to the viscous theory
examined by Moore & Saffman (1969).

NUMERICAL METHOD

The numerical technique used to solve the coupled
nonlinear equations (2), (3) and (5) is based on a finite-
difference approximation of the equations in a conformally-
transformed spatial domain. The region # + 2z > 1 with
r 2 0 is transformed into a semi-infinite region (2, y') with
y' > 0 using the Joukowski transformation

'ty = flztir) =z +ir+ . (6)

z 4w
in terms of complex-valued variables. The advantage of
this form of transformation is that the partial differential
equations are relatively unchanged in terms of the (a/,y')
coordinates. Far from the sphere f approaches an identity
transformation. One-dimensional grid stretching was used
in each of 2’ and y' Lo improve resolution near the sphere
at —2 € 2" < 2 and ' = 0. The flow was solved in a
rectangular region for (2/,3') with a variety of boundary
and radiation conditions applied at the outer edges of the
domain.

An alternating-directions-implicit technique was used
to solve (2) and (3), with either centred or third-order up-
wind differencing used for the advective terms. These equa-
tions were solved in conjunction with the elliptic equation
(5) for the stream function, with an iteration for the nonlin-
ear terms at each time step. Bquation (5) is nonseparable
in the transformed coordinates and was solved using the
general multigrid routine MGD9V (de Zeeuw, 1990). The
set of equations were integrated from initial conditions cor-
responding to an impulsive start to the motion at ¢ = 0,
with ¢ = v = 0 in most of the flow, and the integrations
continued until dv»/dt was less than 0.1%.

RESULTS

In figure 1 some preliminary resulls are presented for
the stream function ¢, vorticity ¢ and swirl velocity v when
Ro = 0and E = 107%. The streamlines in the plot for 1
are relative to the motion of the sphere and they clearly
demonstrate that the flow ahead and behind the sphere
is slow, compared to that with » > 1. In the context of
the experiment this is means that the fluid with » < 1
is pulled along with the sphere, as noted by both Taylor
and Maxworthy. The plot of the vorticity  shows a region
of high vorticity on the surface of the sphere (the Ekman
layer, of thickness O(£7) according to linear theory) and
a less intense region of vorticity extending along the line
= 1. This later region corresponds to the Stewartson
layers (which are thicker than the Ekamn layer), as noted
by Moore & Saffman (1969). That paper also noted the
presence of a singularity in the Stewartson-layer flow at
(r.z) = (1,0), and this is apparent in the numerical results
as a region of high velocity.

The swirl velocity v in figure 1 is clearly concentrated
in the region » < 1, bounded by the sphere diameter, witl
virtuallv no swirling motion outside ol this cylinder. This is
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Figure 1. - Numerical results for the flow past a sphere when Ro = 0 and E = 1072,
The solution is plotted over the range 7 < 10 and —10 < z < 10. Contour intervals are

Ay =0.2, A( =1 and Av =1.

in agreement with both the experimental observations and
the theoretical results by Stewartson (1952) which suggest
that

)
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with v < 0 ahead of the cylinder and v > 0 behind the
cylinder. In particular, the singularity in this expression,
whicl is smoothed out across the Stewartson layers in a
viscous fluid, is apparent in the numerical results by a mmax-
mmum in v near 1 = |.

v~ E forr <1

For o > 0 the llow is no longer symmetric about
and preliminary results show the presence of small-
amplitude stationary lee waves just behind the eylinder
and, for larger Rossby numbers, the separation of the k-
man layer in the same region. The loss of symmetry about
z = 0 means, among other things, that the net torque
on the sphere will be non zero and therefore the muneri-
cal results with v = 0 on the cylinder will not correspond
exactly to those in the experiments. However, since the
same features were present in the experiments it is not ex-
pected that a change in the boundary condition will affect
the qualitative featuves of the flow. Similar features were
. also present in another study, using an earlier version of
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the code, for flow past a circular cylindrical obstacle (or,
equivalently, flow over a cylindrical obstacle in a Boussi-
nesq stratified fluid).

Ifurther trials and comparisons with the experimental
and theoretical results, which are available in special limits,
are continuing and a more comprehensive set of results will
be available at the time ol the conference. Aspects to be
pursued in detail include the drag on the cylinder and the
occurrence of hydraulic jump type phenomena, possibly re-
lated Lo vortex breakdown in the region behind the sphere,
A more detailed examination of the ellect of different types
of radiation conditions will also he conducted.
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