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ABSTRACT

A new semi-analytic method, based on a two-dimensional
eigenfunction solution, for solving steady, turbulent mixing
problems in uniform channels of irregular cross-section, is
presented  The implementation of the method is discussed,
and results are compared with the experimental results of
Wood and Liang (1989).

1 INTRODUCTION

Turbulent dispersion in rectangular channels has received
considerable attention in the literature. Studies have
focussed on longitudinal, vertical and lateral dispersion and
our understanding of the important physical processes is
well advanced, although some uncertainty about the
numerical values of parameters such as the lateral turbulent
diffusivity still remain.

Attention is now turning to the rather mare difficult, but
also more practical, problems of the flow and mixing
characteristics of channels whose cross-section is irregular.
An example is a river comprising a main channel and a flood
plain. Khnight and his co-workers (see Shiono and Knight,
1991) have performed extensive laboratory experiments
aimed at measuring mean and turbulent flow properties for
channels of this geometry. Keller and Rodi (1988)

developed a two-dimensional k- model for predicting these
properties theoretically. Their results are in agreement with
a number of experimental studies surveyed by them.
Arnold, Pasche and Rouve (1985) and Wood and Liang
(1989) have investigated the dispersion characteristics of
such channels.

This paper introduces a new method for solving the three-
dimensional turbulent diffusion equation in channels of
irregular cross-section where a steady source of effluent is
present.

2 THE MATHEMATICAL MODEL

The turbulent advection diffusion equation for a neutrally
buoyant, conservative contaminant can be simplified to
equation (1) if the following assumptions are made:

I, The trbulent diffusivity tensor gj; is diagonal, with

components &, &y, &z,
no currents exist within the channel cross-section,
the dispersing plume is long and thin and hence
the longitudinal turbulent diffusion can be neglected.
d _ 9 dcy, A
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Here x is the downstream coordinate, and y and z the vertical
and lateral coordinates respectively. U is the x velocity
component and ¢ is the contaminant concentration,
The boundary conditions on the cross-section boundaries
are that there is no flux of material. At the cross-section
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denoted by x = 0, a source concentration distribution must

be specified. Thus
C(Oa},!z) = CS(Ysz) (2)

For convenience equation (1) is non-dimensionalised

through the introduction of the following non-dimensional
variables

X =7 y=% 2z=% @
u o= uy(y.z), @)
gy = uwrdyy(y.z), ez = uxdyz(y,z) (5)

where u is the cross-sectionally averaged velocity, uxis a
shear velocity, and d is a representative lengthscale. x, vy

and \; are non-dimensional velocity and diffusivities
respectively.

The choices for ux and d are not unique in an irregular
channel. We will take d to be the greatest flow depth in the
channel and ux to be VgdS where § is the slope of the
channel and g is gravity.

The concentration can be non-dimensionalised by the fully-
mixed concentration, Ce.. S0

¢ = ¢/t (6)
where ces is defined by
Coo = Jcsx dA @

where A is the cross-sectional area. Thus equation 1
reduces to

8 dc

e 4 (8)
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where f = 8u*2/ u2, is the friction factor, and the primes
have been dropped.

3 SOLUTION METHOD

As the flow is assumed to be uniform downstream a
separated solution of the form
c(x,y,z) = X(x)H(yz) (10)
can be sought. This reduces equation (8) to the two-
dimensional eigenfunction problem stated in equations (11)
and (12).
0 JH d dH _




. dH
with wija—x}ni =0 onT. (12)

Equation (12) is simply a statement of the no flux boundary
conditions, n being a unit normal vector on the boundary I".

Here A is the eigenvalue corresponding to the eigenfunction
H, and the general solution to the problem becomes

oo

ctxy) = HZSH exp(- \ §An%) Hn(y,2)  (13)

The coefﬁcif:r_lts, ap, can be found in the usual way from the
source condition. Thus

‘Jcsx Hp dA

‘ix Hp2 dA

The eigenvalues and eigenfunctions of equations (11) and
(12) possess many of the properties characteristic of their
ol?e-dimcnsional counterparts in standard Sturm-Liouville
theory.

The eigenfunctions and eigenvalues can be calculated
numerically. The flow domain is covered by a rectangular
mesh of nodes (see figure 1) and a central finite-difference
approximation to equation (11) is applied at each node. By
assuming that all flow boundaries are vertical or horizontal,
and ensuring that the boundaries lie midway between rows
or columns of nodes, the zero-flux boundary conditions
(which is taken to be zero concentration gradient) are simply
approximated with a central difference.

an (14)

Figure 1.

ure The channel cross-section is indicated by the
solid lines. The nodes in the finite difference mesh are
designated by the circles. The solid circles have no special
significance.

If the nodes are labelled with the indices i and j, i
referring to the row and j referring to the column, then
squation (11) for an internal node, under the fintie difference
approximation, reduces to a set of linear equations which
take the form

aijHi-1j + bijHi+1j + cijHij + dijHjj-1 +

eijHij+1 = -AfijHjj (15)
where
1 e 1 ; ;
aii=——=wy F05] by =——y, it0.5] 16
=2 ¥z ij=2Vz (16)
) 1 : ; Ty
¢j = - E(WZ i+0.5j + yg i 0.5 _])
) Ayz( vy 1I*05 4+ yy 1)-0.5) an
1 574 1 i
djj = —=wyry 1305 | g5 = —— 1y, 1]+0.5 (18)
fij = xij (19)

The indices j + 0.5 etc refer to locations in the mesh halfway

between nodes, and Ay and Az are the node spacings in the
vertical and horizontal.

If node i,j has a neighbour which lies outside the channel
boundaries then the boundary condition can be used to
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replace the external nodal value with that at node i,j. Thus
equation (15) can be constructed at every node inside the
channel cross-section. The resulting set of equations can be
written as

Ah = -ABh (20)

where A and B are NxN matrices, N being the number of
internal nodes, and h is the eigenvector containing the
unknown nodal values.

Standard numerical techniques, which take advantage of
the symmetry of A and B, can be used to calculate the
eigenvalues and eigenvectors of equation (20).

4 RESULTS

4.1 Velocity and Diffusivity Distribution

At this point no assumptions have been made regarding
the form of the velocity or diffusivity distributions. The
model allows these distributions to be specified as
continuous fields or in a pointwise fashion. A number of
different velocity and diffusivity models, based on rather
simplistic assumptions, will be considered here.

If it is assumed that the flow is in local equilibrium and
that lateral gradients in the flow are small the local shear
stress at the bed must balance the driving gravitational force.
Thus a local shear velocity can be defined as

u*local = VgdlocalS

where the local depth has been used in equation (21). By
taking the assumption of local equilibrium further we
suggest that the lateral and vertical diffusivities should scale
with the local depth. Thus in regions of the flow where the
depth is less than maximum the diffusivities will be smaller
that those in the deepest part of the channel by a factor of

. ’ dlocal
dmax’

In addition the mean flow velocity will be expected to
vary between regions of differing flow depth. The
suggestion of Smith (1982), that the mean velocity should
scale in the same fashion as the shear velocity, was
supported by the experimental results of Nokes (1986) in a
triangular channel. The experimental studies examined by
Keller and Rodi (1988) also lend moderate support for such
a relationship. This result has the nice consequence that the
friction factor becomes an invariant of the channel,
independent of local conditions.

Finally, near an abrupt change in channel depth it would
be expected that the local horizontal shear would enhance the
local turbulent intensities, thus increasing the turbulent
diffusivities. This argument is supported by the numerical
results of Keller and Rodi (1988). In the fourth model
presented below this increase will be accounted for
empirically by assuming that both diffusivities take on twice
their normal values within one half depth of a change in
channel depth.

The four velocity/diffusivity models used are as follows:

@1

1. Uniform:

K K

x:I, \_l[yzg, ‘PZ=§

where K is von Karman's constant, generally taken to be
0.4. This is the most simple model where all quantities are
assumed to be constant throughout the flow. The depth-
averaged values relevant to a rectangular, laboratory channel
(see Nokes, 1986) are used.

2 Uniform scaled:

B localN0.5 _ K dlocalyl.5
X = xo(?imax) » Wy = 6[dmaxj ’
_ K dlocalyl.5
¥z, = 3 (‘d'm‘ E%



Variations with the vertical coordinate are neglected in
this model but the scaling with local depth, discussed above,

is now employed. The constant Xo is chosen to ensure that

the cross-sectional average of 7 is 1.
3. Non-uniform scaled:

The variations with the vertical coordinate are now
incorporated into the distributions. The velocity will be
assumed to have a power law dependence, the exponent of
which is determined by a least squares best fitto a
logarithmic profile. The vertical diffusivity has the
commonly accepted parabolic shape and the horizontal
diffusivity, after Nokes and Wood (1988), is assumed to
have the same vertical dependence as the velocity. So

or/Qlocalnl.5
% = kol + ey e
; w7l 1.5
vy = kYA - Y (Gea)
_k o, (Qlocalyl-5
Yz = 3(1+o&)yO‘(dd—maxj

The variable y' is a local vertical variable, being 0 at
the bed and 1 at the free surface.

4. Empirical scaled:

The distributions are the same as in model 3 except
the increased turbulent intensity near an abrupt change in
channel depth is accounted for empirically, as discussed
above.

4.2 First Eigenvalue and Eigenfunction

The first non-zero (smallest) eigenvalue and its
corresponding eigenfunction play a fundamental role in the
prediction of effluent dispersion in a channel. This mode is
the last to decay in equation (13) and hence it determines the
distance downstream of the source at which mixing is
essentially complete. This smallest eigenvalue determines
the mixing distance.

If the source is located in a position where the first
eigenfunction vanishes then the coefficent for this mode aj is
zero. In this case the second mode dominates downstream
and the pollutant becomes fully mixed most rapidly. Such a
source is referred to as the 'ideal source'.

It is the ability of this solution method to predict easily the
form of the first eigenfunction and the value of the first
eigenvalue which makes this semi-analytic solution method
superior to a full numerical scheme.

Figure 2 presents contour plots of the first eigenfunction
for each of the four velocity/diffusivity models. The
channel cross-section has been chosen arbitrarily, Also
indicated on each of the diagrams is the value of the first
eigenvalue,

Model 1 can be seen to predict a rather larger eigenvalue
than the other three model,s indicating a 60% shorter mixing
distance. This is due to the fact that model 1 does not
account for the decrease in diffusivities in the shallow
portions of the channel. The other three models show little
variation, although model 4 with its increased mixing
capabilities near steps in the channel bed predicts a slightly
shorter mixing distance. For channels with significant
variations in flow depth the simplistic model 1 would seem
to be inappropriate.

The zero contour of the first eigenfunction for models 2, 3
and 4 are nearly coincident while that for model 1 lies rather
closer to the centre of the channel. This variation will
become more important as the depth variations in the channel
increase.

4.3 A Comparison With Wood and Liang (1989)

Wood and Liang(1989) measured point concentrations
downstream of a steady source in a main channel/flood plain
geometry. Their two-dimensional solution showed
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Uniform solution First cigenfurction

F=0.08 k=035 olpha=0.3038

First eigenvelue = 0.018316

Scaled uniform solution First cigenfunction

f=0.08 k=035 olgha = 0.3038

First eigervalue = 0.009106

Sealed nonruniform solution First sigenfunction

f=008 k=0.35 alpho = 0.5038

first eigenvalue = 0,009299

Empiricel scaled solution

f=008 k=035

First eigenfunction

alpha = 0.3038

First eigenvolue = 0.010708

Figure 2: Plots of the first eigenfunction in a channel
with an arbitrarily chosen cross-section for each of the
velocity/diffusivity models. The labelled curves are
eigenfunction contours. The eigenvalues are also given in
each plot.

qualitative agreement with their experimental results.  As
their measurements were all made within the near-source
region (i.e. where vertical and lateral concentration gradients
are present) the present model will be able to produce more
detailed predictions of the concentration distribution.

Figures 3 and 4 present the predictions of models 1 and 4
respectively as a set of concentration contour plots at a
number of downstream sections for one of their
experiments. Figure 5 reproduces the actual measurements
of Wood and Liang. In this particular experiment the source
was placed in the main channel near the step.

The predictions of the two models differ in a number of
ways. Model 1 predicts that the effluent is mixed more
rapidly into and across the flood plain than does model 4 but
the experimental results are not capable of differentiating
between the two models. However the movement of the
maximum concentration in the plume is more acurately
predicted by model 4. The experimental results demonstrate
that at the first section downstream of the source (x = 19.6)
the maximum in the plume has dropped to the bed and the
maximum concentration in the plume is a little more than 5.
Both the movement and magnitude of the maximum are well
predicted by model 4. On the other hand the uniform model
does not predict the downward movement of the maximum
until x =49, The measured decrease, with distance
downtream, of the maximum concentration in the flow is
also more acurately modelled by the more sophisticated
model.

It would seem that the incorporation of the velocity and
turbulent diffusivity dependence on local depth, in some
form, is necessary for accurate predictions of the turbulent
mixing in channels with a complex cross-section.
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Figure 3: Concentration predictions, using model 1, of
the Wood and Liang (1988) flow. The source location is
marked by an asterisk in the first plot. The labelled curves
are concentration contours.
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Figure 4: Concentration predictions, using model 4, of
the Wood and Liang (1988) flow. The source location is
marked in the first plot. The labelled curves are
concentration contours.
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Figure 5: The concentration measurements of Wood
and Liang (1988) reproduced from their paper. These
results are for the same flow conditions as figures 3 and 4.

5 CONCLUSIONS

A new numerical procedure for predicting three-
dimensional turbulent dispersion in uniform channels of any
cross-sectional shape has been presented. In the near-
source mixing zone where both vertical and lateral mixing
are important in the dilution of the pollutant a three-
dimensional solution offers more detailed information about
the concentration field than a two-dimensional solution.
Comparison with experiment implies that a mathematical
model must incorporate the dependence on local depth of
velocity and turbulent diffusivities if the mixing in a
compound channel is to be accurately predicted.
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