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ABSTRACT

A variety of hydrodynamics problems concerning
ships and offshore platforms can be addressed within the
context of potential theory. Most numerical solutions are
based on panel methods. The basic methodology is de-
scribed, and illustrated by various special topics includ-
ing wave effects on offshore platforms, ship motions in the
time domain, ship interactions in a channel, higher-order
panel methods, and other related works.

1. INTRODUCTION

The field of marine hydrodynamics includes applica-
tions of fluid mechanics which are pertinent to ships, off-
shore platforms, and other vessels. Traditionally these
problems have been addressed experimentally in towing
tanks and water tunnels. Advances in theoretical knowl-
edge and computational ability have made it possible to
transfer much of this work from physical experiments to
numerical solutions.

Many problems of practical importance can be anal-
ysed as potential flows, neglecting viscous effects. These
include the wave resistance of ships, motions of ships and
platforms in waves, propeller performance, and the in-
teractions between adjacent ships manoeuvring in close
proximity. In these cases the Reynolds number is large,
and separation is avoided either because the geometry is
streamlined, or because the Keulegan-Carpenter number
is small. Boundary-layer corrections can be applied when
it is appropriate to do so.

Within the assumptions of potential theory, we seek
numerical solutions of Laplace’s equation in the fluid do-
main, subject to appropriate boundary conditions. In
the simplest case the normal velocity is specified on the
body, the fluid extends to infinity in all directions, and
the solution is specified at infinity. Since the fluid do-
main is unbounded, an effective numerical approach is to
distribute sources and (optionally) normal dipoles on the
body surface. Justification for these representations fol-
lows from Lamb (1932, §§57-8). In the ‘potential formu-
lation’ Green’s theorem is used directly, with the source
strength equal to the known normal velocity and the
dipole moment equal to the unknown potential. A second-
kind Fredholm integral equation can then be solved for the
velocity potential on the body. In the alternative ‘source
- formulation’ the potential is represented by sources alone,
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with unknown strength. Evaluating the normal derivative
on the body leads to a similar Fredholm equation for the
source strength.

The first use of this approach, for three-dimensional
bodies of arbitrary shape, was by Hess and Smith (1964).
In their numerical technique the source formulation is
used, the body surface is approximated by a large num-
ber N of small flat quadrilateral ‘panels’, and the source
strength is assumed constant on each panel. A set of
N linear algebraic equations follows by imposing the
body boundary condition at one collocation point on each
panel. In this linear system the N? influence coefficients
represent the normal velocity induced on each panel by a
unit-density source distribution on the other panels. The
right-hand-side vector is the normal velocity at each col-
location point, determined from the body boundary con-
dition. The solution can be obtained by standard matrix
algebra, yielding the appropriate source strength on each
panel. It is straightforward to solve for the velocity po-
tential, velocity vector, and pressure on the body or in
the fluid domain.

A vital element in the original work of Hess and Smith
was their derivation of analytic expressions for the poten-
tial and velocity induced by a unit-density source distri-
bution on a flat quadrilateral panel. Without these algo-
rithms it would be necessary to use numerical integration,
a slow and potentially inaccurate approach when the field
point is near or on the panel.

Figure 1 — Discretization of the submerged surface of the
Snorre Tension Leg Platform with 13952 panels.



Numerous extensions and modifications have followed
the seminal work of Hess and Smith. Some have used the
source formulation, and others have adopted the poten-
tial formulation. This distinction is less important than
one might suppose. The kernels of the respective integral
equations are related by transposition, a consequence of
the reciprocity between the normal velocity induced by
a source and the potential of a normal dipole. Thus the
computational effort involved in setting up and solving
the linear system is practically the same in both cases.
The following differences vary in importance depending
on the application:

a. For thin bodies (or appendages), normal dipoles are
more stable than sources in representing cross-flow
components. The equivalence of normal-dipole and
vortex distributions is another hint of the utility of

dipoles, particularly in lifting problems.

. In the source formulation the fluid velocity can be eval-
uated from first derivatives of the Green function, but
in the potential formulation second derivatives are re-
quired. The latter is not robust when a curved surface
is approximated by flat panels, since the local velocity
field induced by the dipole distribution varies rapidly
over distances comparable to the panel dimensions.

c. For bodies which intersect the free surface, the solu-
tion of the integral equation breaks down at a discrete
set of ‘irregular frequencies’. This difficulty arises in
both formulations, but it is more serious in the source
formulation (Yeung, 1982).

. If the only physical parameter of interest is the lin-
earized pressure on the body, proportional to the veloc-
ity potential, the potential formulation is advantageous
in terms of programming, storage, and computational
cost.

The number N ot panels required Lo achieve the de-
sired computational accuracy, and the associated com-
putational burden, are important practical issues. From
geometric and hydrodynamic considerations we can ex-
pect that simple body shapes with continuous curvature,
such as spheres, spheroids, and ellipsoids, will require rel-
atively few panels, and conversely for more complicated
body shapes. In the early days of this field pragmatic
considerations limited NV to be on the order of 100, Many
current applications involve 1000-10,000 panels.

Four distinct computational tasks may be identified
in estimating the cost of increasing N:

a. Pre-processing to derive the panel representation and
auxiliary parameters (unit vectors, areas, moments,
cross products) is directly proportional to N.

- Set-up of the linear system requires the evaluation of
N? influence coefficients.

c. Solution of the linear system requires O(N?) computa-
tions if direct solution algorithms are used, or O(N?)
computations per iteration, if a suitable iterative algo-
rithm can be utilized.

. Post-processing to evaluate integrated parameters such
as the pressure force and moment requires O(N) com-
putations.
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Clearly the set-up and solution are dominant. Their rela-
tive importance depends on the algorithms used and the
magnitude of N.

In the era when N was relatively small, direct solution
of the linear system was appropriate, based on Gauss elim-
ination. This permitted the use of standard algorithms.
The computational burden was not a concern, particularly
for free-surface applications where the cost of evaluating
the influence functions was dominant. However the devel-
opment of special algorithms for the influence functions,
and advances in hardware, made it feasible to increase
N to the level O(1000), where the O(N?) cost of direct
solution became dominant. With the implementation of
effective iterative solutions, the cost of both the set-up
and solution increase in proportion to NZ2.

A survey of the mathematical basis for panel methods
is given by Atkinson (1990). A recent review of applica-
tions and numerical techniques is given by Hess (1990).

It is beyond the scope of this paper to survey the ex-
tensive field of panel methods, even within the context
of marine hydrodynamics. Instead an account is given of
several developments in which I have participated, supple-
mented by a brief summary of parallel work by my col-
leagues in the Department of Ocean Engineering at MIT.
In addition to wave problems these include the comple-
mentary field of propellers and lifting surfaces, a higher-
order panel method based on B-splines, and a method
where the computational cost is reduced to O(N).

2. WAVE LOADS ON OFFSHORE PLATFORMS

From the standpoint of the relevant fluid mechanics,
wave loads on offshore platforms fall into two categories.
For platforms with cross-sections which are small relative
to the wave trajectories, free surface effects are not as sig-
nificant as the oscillatory drag due to separation. This
leads to the approximation known as ‘Morison’s formula,’
where a quasi-steady viscous drag is combined with an
inertial force proportional to acceleration. While it is a
source of continuing debate between practicing engineers
and the research community, Morison’s formula has been
used extensively for platforms consisting of multiple cylin-
drical elements with relatively small diameter.

Wave diffraction and radiation are more significant for
platforms with larger cross-sections. These are of increas-
ing importance, especially in deep water. The tension leg
platform illustrated in Figure 1 is an example of partic-
ular current interest. Viscous effects are less significant
due to the reduced Keulegan-Carpenter number. In these
circumstances it is appropriate to assume a potential flow,
and to account for free-surface effects.

Starting about twenty years ago, the panel method-
ology was extended to linear three-dimensional water-
wave radiation and diffraction problems. This extension is
conceptually straightforward, since the Green function is
known for a source in the presence of a linearized free sur-
face. With the oscillatory time dependence represented
by the complex factor exp(iwt), both the Green function
and the unknown source strength or velocity potential
are complex. A more significant complication is that the
free-surface Green functions are difficult to evaluate, par-
ticularly in their original forms expressed as integrals in



wavenumber space. For this reason early programs re-
quired substantial computer time, restricting the number
of panels which could be utilized, and the results were
of uncertain accuracy in some cases. Eatock Taylor and
Jefferys (1986) focussed attention on these limitations by
comparing the results from different codes.

We were attracted by the challenge of this problem
about ten years ago, and extensive research has followed.
Algorithms have been developed to evaluate the Green
functions using Chebyshev approximations in place of di-
rect evaluation of the underlying Fourier integrals, as de-
scribed by Newman (1992). A special iterative solver was
developed by Lee (1988) to overcome the O(N?) barrier of
Gauss elimination. For most practical applications con-
vergence is achieved in 10-20 iterations. On rare occasions
in special problems convergence is not readily achieved,
and it is necessary to revert to the direct solution. (The
most frequent cause of poor convergence is defects in the
panel representation of the body. This can be excused on
the basis of ‘user error’, but the practical difficulties of
preparing effective discretizations for complicated geome-
tries cannot be ignored.)

The program WAMIT, which incorporates these al-
gorithms, is now used extensively in the offshore indus-
try. An example of computations is presented in Figure 2,
which shows the longitudinal (surge) exciting force due to
incident plane waves acting upon the platform shown in
Figure 1. Wave interference between the vertical columns
is evident from the oscillatory character of the force. The
peaks and minima coincide closely with values of kL equal
to nm or (n + })m, respectively.

In these results a modified integral equation is solved
in the manner described by Lee (1988), to provide a robust
solution at the irregular frequencies. For this platform the
first two irregular frequencies occur near kL=14.6 and
kL=23.3. The solution of the original integral equation
displays small fluctuations near these points.
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Figure 2 — The surge exciting force for the platform in
Figure 1. The ordinate is the force amplitude normal-
ized by the water density, wave amplitude, gravity, and
the square of the column radius a = 12.5m. The normal-
ized wavenumber kL is based on the spacing between the
.column axes L=T6m.
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To indicate the convergence of these results, Table I
compares the peak values of the exciting force in Figure 2
for a sequence of three discretizations with N=872, 3488,
and 13952 panels. Assuming the discretization error is
of order 1/N, Richardson extrapolation can be used as
shown in the last two columns of Table I. This appears
to be effective only at the middle three wavenumbers,
where the first extrapolant based on the coarse discretiza-
tions improves the agreement with the finest discretiza~
tion. The proximity of the second irregular frequency may’
explain the inefficacy of Richardson extrapolation for the
largest wavenumber. There is no obvious explanation why
the first wavenumber also is an exception.

The same approach can be extended to multiple in-
teracting bodies. Such problems are important for ma-
rine operations, e.g. the installation of offshore platforms
with floating cranes and other vessels in close proximity.
It is convenient to consider the union of all bodies as one
extended boundary surface, defined by the ensemble of
each separate set of panels. The total number of degrees
of freedom is the sum of the number of independent mo-
tions for each body. In each mode one body oscillates and
the others are fixed. In this way the principal extension
required is simply to extend the definitions of the vectors
defining the degrees of freedom, and corresponding forces
and moments.

A more profound extension is to evaluate second-
order wave effects including the time-average and second-
harmonic components associated with a monochromatic
first-order input, and the corresponding difference- and
sum-frequency components in a bi-spectrum. The most
difficult task is to satisfy the inhomogeneous second-order
free-surface boundary condition, which requires distribu-
tions of singularities over the entire free surface. The
resulting surface integrals are oscillatory, and converge
slowly with increasing radial distance from the body. Fur-
ther details and computational results are given by New-
man and Lee (1992).

kL
1.46 11.2743
11.3101 11.3220
11.3127 11.3135 11.3129
5.35 20.9011
20.6509 20.5676
20.5652 20.5366 20.5346
11.92 6.6882
6.5178 6.4611
6.4699 6.4539 6.4534
17.51 3.0743
3.1032 3.1128
3.1136 3.1171 3.1173
24.32 2.7459
2.9136 2.9695
2.8948 2.8885 2.8831

Table I — Peak-values of the surge exciting force coefficient
in Figure 2. The second column shows the computed re-
sults for N=872, 3488, and 13952 panels. The third and
fourth columns are the Richardson extrapolants.



3. TIME-DOMAIN SHIP MOTIONS

For the ‘seakeeping’ analysis of a ship, the unsteady
motions are superposed with the steady-state flow due to
the ship’s mean forward velocity. In the frequency do-
main the appropriate Green function is the potential of
an oscillatory translating source, which is unusually dif-
ficult to evaluate. This problem can be circumvented by
solving an initial-value problem in the time domain, using
the transient Green function and advancing its position in
space. Green’s theorem then is used to solve for the veloc-
ity potential, with a convolution in time over the history
of the motion. Algorithms for the transient free-surface
Green function are described by Newman (1992).

The convolution integral is evaluated by the trape-
zoidal rule, in a sequence of equal time steps. Only the
current value of the potential is unknown at each time
step. One simplification, associated with the initial con-
ditions, is the absence of wave effects in the influence co-
efficients at the upper limit of the convolution integral
corresponding to the current value of the unknown. Thus
the left-hand-side coefficient matrix is the same for all
time steps, and can be inverted at the outset. The so-
lutions for subsequent time steps involve simple matrix
products with O(N?) computations.

The evaluation of the convolution integral requires ei-
ther the storage or recomputation of the Green function at
earlier time steps. With current workstations disk-access
is faster than recomputation, but the storage requirement
is substantial. For a typical problem with O(1000) panels
and 200 time steps, 1-2 gigabytes of storage is required
to avoid recomputation. With expected improvements in
CPU speed relative to the access time of disk drives, it
soon may be faster to recompute the Green functions and
storage requirements then will be greatly reduced.

Figure 3 shows a typical computation, the time his-
tory of the vertical force on a ship hull due to an im-
pulsive incident wave. Here the incident wave is a su-
perposition of regular waves of all frequencies, advancing
toward the ship’s bow with suitable amplitude and phase
to produce a delta-function wave height at ¢t = 0. For
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Figure 3 — Heave exciting force on a Wigley ship hull mov-
ing with Froude number Fn into impulsive head waves.
The hull is discretized with 264 panels.

t > 0 the delta function disperses into the same regular
wave components, moving on in the same direction in a
manner analogous to the waves in a Cauchy-Poisson dis-
turbance. The resulting force is peaked about ¢ = 0 as one
would expect, with a small number of precursor oscilla-
tions and more persistent oscillations after the waves are
past. For increasing forward velocity (Froude number) of
the ship, moving in the direction opposite to the waves,
the peak force is increased but its duration is reduced.
Transforming to the frequency domain by Fourier inte-
gration, and converting from the frequency of encounter
to the incident wavelength, gives the results shown in Fig-
ure 4. A more detailed account of this work is given by
Bingham et al (1993).

4. SHIP INTERACTIONS IN A CHANNEL

Computations in the time domain also can be used
to analyse the interactions between ships moving with
unequal velocities. Such problems are particularly impor-
tant in narrow channels. If the ships’ velocities are small
the free surface can be replaced by a homogeneous Neu-
mann condition. This simplification, equivalent to supple-
menting each ship’s submerged hull by its image above the
‘rigid’ free surface and reflecting the fluid domain above
the same plane, is referred to as the ‘double-body’ flow.

We have applied panel methods to the case where one
ship is moored, while a second ship moves past with con-
stant velocity. The principal concern is the time-history
of the horizontal force and vertical moment acting on the
moored ship. Two complementary approaches are de-
scribed and compared by Korsmeyer et ol (1992). In the
first, a uniform rectangular channel section is assumed
and the Green function is suitably modified to satisfy the
boundary conditions of zero normal velocity on the chan-
nel sides and bottom. The algorithms for this procedure
are described by Newman (1992). In the second approach,
panels are used not only to represent the two ship hulls,
but also the bottom and sides of the channel. In this
manner the hydrodynamic effects of irregular channel to-
pographies can be reproduced. The example in Figure 5
shows the submerged portions of two ships and the sur-
rounding channel.

: o, ol SRR T . O I SR T k] i3 I LT R

0.75

Fn=00
***** Fn=02
——=== Fn=04 1

0.50

0.25 |-

1.0 20 a0 40
L/A
Figure 4 — Heave force in Figure 3, transformed to the

frequency domain. The abscissa is the ratio L/ between
the ship length and wavelength.



Figure 5 — Discretization of two ships in a channel of irreg-
ular cross-section. For subsequent time steps the larger
ship moves past the smaller ship. The channel ends are
in the far field of the smaller ship to minimize truncation
effects in the prediction of the force on the smaller ship.

Various extensions are possible, including the evalua-
tion of sinkage and trim on a ship in a restricted channel,
the interactions between two (or more) moving ships, and
curved trajectories. Free-surface effects can be accommo-
dated by using the time-domain Green function as in §3.
One effect which has not been included here is the lifting
effect of oblique flow on a moving ship, which leads to
shedding of a vortex wake. Computational models can be
developed along these lines, with a Kutta condition im-
posed at the ship’s stern, but estimates based on slender-
body theory suggest that this may overestimate the lifting
effect for practical ship hulls.

5. A B-SPLINE PANEL METHOD

Higher-order panel methods have been developed in
the past with linear or quadratic polynomials used to rep-
resent the panel surface and the unknown potential or
source strength. Usually these polynomials are in pow-
ers of Cartesian coordinates in a plane tangential to the
panel. For curved panels the integrals for the singularity
distributions cannot be expressed in closed form, and dif-
ficulties arise in the representation at the intersections of
adjacent panels. Efforts to assess the efficiency of these
methods have been hampered by differences between in-
dividual programs, and by different choices of the body
geometry and hydrodynamic parameters.

A more general scheme, based on the use of B-
splines, has been widely adopted for surface definition in
computer-aided design. In panel methods the same basis
functions can be used to represent both the geometry and
the unknown potential or source strength. (This dual-
ity is analogous to isoparametric finite-element methods.)
We have explored this approach for two-dimensional flow
problems, and summarize the results briefly here. Further
details are given by Hsin et al (1993).

The simplest problem is considered, for the two-
dimensional streaming flow past a body defined by a
closed contour in the complex z-plane. The normal ve-
locity is zero on the body and the fluid extends to infinity

"in all directions.
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Defining the body geometry by B-splines is equivalent
to expressing the values of z on each panel by a polynomial
of specified degree n in a parametric coordinate £. The de-
grees n = 1,2, 3 correspond to piecewise linear, quadratic
or cubic representations. The corresponding polynomials
of B-spline basis functions preserve continuity in value,
slope, and curvature, respectively. The parametric coor-
dinate ¢ increases monotonically along the contour, cor-
responding approximately to the arc length. The values
of ¢ at the intersections of adjacent panels are prescribed
by the so-called ‘knot vector’. The body shape is deter-
mined by specifying values of ¢ at these points, and the
coefficients of the basis functions. With N panels a total
of N + n coefficients are required. The same representa-
tion is used for the velocity potential on each panel, with
N + n unknown coefficients. Bodies with corners, and
singularities in the potential, can be accommodated by
using multiple knots.

Green’s theorem provides an integral equation for the
velocity potential, which is discretized in terms of the pan-
els and solved by collocation. Some freedom exists in the
number and choice of the collocation points. With cu-
bic polynomials (n = 3) we use three collocation points
on each panel. This gives 3N equations for N + 3 un-
knowns, an overdetermined linear system which is solved
by least-squares.

The set-up of the linear system requires the evalua-
tion of integrals over each panel of the source potential
and its normal derivative, multiplied respectively by the
B-spline representations of the normal velocity and poten-
tial. Analytic relations have been derived for this purpose
including closed-form expressions valid when the colloca-
tion point is on the panel itself, and multipole expansions
which are effective when the collocation point is greater
than one panel-width away from the panel. When neither
of these conditions is satisfied, e.g. when the collocation
point is on an adjacent panel, the original panel is sub-
divided into smaller sub-panels such that the restriction
for using the multipole expansion is satisfied for each sub-
panel.
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Figure 6 — Comparison of errors in the circulation on a
Karman-Treftz foil using constant and cubic basis func-
tions. The number of panels N is shown next to each
symbol.



Two test cases have been studied, a square and a
Karman-Treftz foil at an angle of attack. For the square,
continuity of the potential is imposed across each corner.
For the lifting foil, a point vortex is added at the trailing
edge; its strength is determined iteratively to satisfy the
Kutta condition of continuous pressure. For both cases
comparisons have been made with the analytic solutions,
using different degrees n and varying numbers of pan-
els. These comparisons confirm the efficiency of the cubic
representation, in terms of CPU time as well as storage
requirements. The lifting case is illustrated in Figure 6.
Current efforts are devoted to the three-dimensional ex-
tension of this method.

6. OTHER APPLICATIONS

In §§2-3 the free-surface Green functions are used to
avoid integration over the domain of the free surface. This
is effective in cases where the Green function is known,
and practical to compute. An alternative is to utilize the
simpler Rankine Green function (1/R), and include the
domain of the free surface in the integral equation. This
alternative is followed in two different contexts, for wave
interactions with moving ships where a variety of different
free-surface conditions are employed, and in the solution
of fully-nonlinear wave problems.

The ‘Rankine panel method’ is applied to steady
and time-harmonic ship-wave problems by Nakos and
Sclavounos (1990). Quadratic B-splines are used to rep-
resent the potential on the ship hull and free surface. At-
tention is given to the numerical errors (dispersion and
damping) associated with discretization of the free sur-
face. Alternative free-surface conditions are applied in-
cluding linearization about the free stream (the classical
condition), and about the double-body flow (appropriate
for smali Froude numbers). An illustration of the steady
results is shown in Figure 7.

Fully nonlinear three-dimensional wave effects are
considered by Xii and Yue (1992), based on the mixed
Eulerian-Lagrangian formulation. Periodic boundary
conditions are imposed in the two horizontal directions,
corresponding physically to waves propagating in a rect-

A
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angular tank. Quadratic polynomials are used to repre-
sent the unknown potential on the exact free surface. The
solution is carried out in a sequence of time steps, start-
ing from prescribed initial conditions, and a pressure is
applied on the free surface to energize the waves. A strik-
ing feature of the solution is the occurrence of transverse
propagation of the highest wave elevation along the crest.

Contrary to the conventional estimates of computa-
tional cost in §1, Nabors et al (1992) demonstrate a panel
method where the cost is O(IN) for sufficiently large num-
bers of panels. The panels are grouped in a cubical hi-
erarchy such that the largest cube, enclosing the body,
contains eight smaller cubes, and the subdivision is con-
tinued until the smallest cubes contain approximately the
same number C' << N of panels. Spherical harmonic ex-
pansions are used to evaluate the influence of each cube,
and to construct local expansions appropriate to each col-
location point. The resulting matrix is pre-conditioned in
an effective manner which exploits the cubical structure.
After pre-conditioning the linear system for the N singu-
larity strengths is solved iteratively. Computational evi-
dence is given to demonstrate that the cost is linear in N
for sufficiently large numbers of panels. Current work is
devoted to applying this method to nonlinear wave prob-
lems, where the singularities are distributed on both the
body and free surface.

Panel methods have been applied to a variety of lifting
bodies in marine hydrodynamics, including propellers and
yacht keels. Two examples are illustrated in Figures 8 and
9. The trailing vortices are replaced by a discretized sheet
of normal dipoles, with the moments determined by the
Kutta condition at the trailing edge and by the require-
ment of zero pressure jump across the sheet. Imposing
the nonlinear Kutta condition is numerically troublesome,
and requires an iterative approach. For screw propellers
the wake panels are distributed on a helix. Truncation at
a finite distance downstream is necessary, with the influ-
ence of the far wake approximated by an actuator disk.
Various extensions include the representation of ducted
propellers, nonuniform inflow leading to unsteady effects,
and cavitation near the leading edge. A recent review is
given by Kerwin & Keenan (1991).
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Figure 7 — Steady ship-waves generated by a Wigley hull with Froude number 0.32, computed by the
Rankine panel method of Nakos and Sclavounos (1990). The hull is represented by 240 panels and the
free surface by 3920 panels. In the abscissa of the contour plot the ship’s bow and stern are at £0.5.
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Figure 8 — Perspective view of a marine propeller with five blades. Each blade is represented by 450
panels and the trailing vortex sheet (not shown) by 330 panels. The corresponding sector of the hub is
represented by 312 panels, giving a total of 5460 panels for the complete configuration. The pressure
distribution is represented by different color shades.

Figure 9 — Perspective view of an America’s Cup yacht keel, oriented at a leeway angle of 3°. A total of
2220 panels are located on the keel, bulb, and winglets, with 390 additional panels (not shown) on the
trailing vortex sheet. The pressure distribution is represented by different color shades.
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7. CONCLUSIONS

Panel methods provide a versatile framework for the
numerical solution of potential-flow problems in marine
hydrodynamics. The principal advantages of this ap-
proach are its abilities to represent exterior flows and
bodies of arbitrary geometrical form in three dimensions.
It is straightforward in principal to impose additional
boundary conditions, such as on the free surface, if the
Green function which satisfies the additional conditions
is known. Alternatively, simpler Rankine Green functions
can be retained with the computational domain extended
to include the additional boundaries.

Various applications are illustrated in this paper, in-
cluding wave effects on offshore platforms and ships, ship-
to-ship interactions, studies of nonlinear waves, and pre-
dictions of propeller performance. These range from ap-
plications primarily of research interest to others which
are currently used by practicing engineers.

The rapid developments in computer hardware have
facilitated the use of panel methods, in environments
ranging from personal computers to supercomputers.
Only four years ago we found it necessary to use the Cray
to perform benchmark computations of wave interactions
with offshore platforms represented by about 4000 panels.
Today the same computations are performed routinely on
PC’s. Future advances can be assumed, which will en-
hance our ability to solve more complicated problems.

The advances in numerical analysis are equally im-
portant., Special algorithms for evaluating the influence
functions and solving the linear system have improved
the performance and reliability of panel methods. New
techniques, such as the higher-order B-spline and order-N
methods, offer the possibilities to match future advances
in hardware with comparable improvements in software.
Thus the numerical solutions of more complicated three-
dimensional potential flows are practically assured. Likely
problems to be successfully attacked in the next several
years are combinations of the simpler applications, for
example the steady or unsteady motions of a ship hull
including the effects of both the propeller and the free
surface, or the interactions of an offshore platform with a
nonlinear wave system.
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