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ABSTRACT

Mass conservation in a steady compressible or
incompressible flow can be represented by expressing the
mass flux vector as the cross product of the gradients of two
scalar stream functions. Surfaces on which either function is
constant are stream surfaces and lines on which both
functions are constant are stream lines.

New techniques based on these functions have been
developed for constructing stream lines from discretely
defined velocity or mass flux fields. The advantages these
techniques have over conventional methods are that mass is
conserved and that the stream lines can be advanced over a
mesh cell in a single step rather than arbitrarily selected time-
steps. The new algorithms can be at least an order of
magnitude faster than conventional methods.

INTRODUCTION

Although stream lines and particle paths are
fundamental to flow visualisation, their use by computational
fluid dynamicists is often hindered by excessive
computational requirements and inaccuracies which cause
unrealistic effects such as false spiralling and stream lines
which pass through solid boundaries. These 'consistency’
defects can be overcome if the interpolations used to generate
continuous velocity fields represent exactly the underlying
law of mass conservation (Mallinson 1988). High order
integration schemes using small time steps contribute to the
computational overheads. Direct construction of a line over
large sections, such as mesh cells, of the flow can reduce
these overheads.

For a two-dimensional steady flow, the stream function
(which doesn't have to be used during the solution process)
can be used to generate stream lines, a contour map of the
stream function providing a visualisation of the whole field.
Recognising that the stream function is an integral or potential
of the velocity field, the research reported herein sought to
find scalar potential functions which could be applied to
three-dimensional flows.

THE MECHANICS OF STREAM LINE
CONSTRUCTION

The task of constructing stream lines reduces to finding
the lines of a vector field. The most general case considered
herein is steady compressible flow where the mass flux
vector field is solenoidal,

Vig=0: q=pv (H
where p is the density and v the velocity vector. For
incompressible flows p is constant and can be removed from
(1). For generality, the techniques described in this paper
will be applied to the construction of the lines of a general
solenoidal vector field, q.
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It has been shown (Mallinson 1988) that the essential
arguments can be presented in terms of cartesian coordinates
without undue loss of generality. Accordingly, q can be
represented by its three cartesian components, qy, q2 and g3
and the lines of q are the solutions to the equations,

@)

By the introduction of an integration variable, s say, (2) can
be represented by,

%=q(r) rr=xi+yj+zk 3)

so that given an initial point, p,

S
r(s) = p + [q(r(s))ds @)
0

The integration of (4) is usually done numerically. It is
now accepted that a 4th order Runge-Kutta scheme is more
than adequate provided the integration step sizes are kept
suitably small or controlled adaptively using relevant stream
line properties such as curvature.

As far as this discussion is concerned, inaccuracies
arising from the numerical integration of (4) are conceded to
be small. The integration does however incur computational
overheads which motivate its avoidance.

CRITIQUE OF EXISTING METHODS

Generally, the algorithms in current visualisation
packages differ primarily by the interpolations used to
generate a continuous g for equation (4). The most popular
interpolation is tri-linear (Eliasson er al 1989) and its
deficiencies are generally known, (but not necessarily
understood). Higher order interpolation schemes, such as
cubic splines (Handscome 1983, Mathew and Wilkes 1986)
have also been used to ensure that q is solenoidal and to
improve the level of accuracy. The computational overheads
are such that the search for good performance low order
interpolation schemes is justified.

Tri-linear interpolation of the flux components

Using the notation in Figure 1 tri-linear interpolation
can be written as

6, = {1a)(1-x) + qlx(1-y) + [a7(1-%) + @Iy} (1-2)

+ {[g{(1x) + @XIA-Y) + [@1x) + g %y )2 (3)
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Figure 1. Notation used to represent a mesh cell. The
components of q (q;) are located at the corners.

The superscripts in (5) refer to cell corner locations in
Figure 1. An alternative form of (5) is

)

q,=2 + bix+ cy+ diz + exy + fixz +gyz+ hixyz ;

Expanding (5) yields the coefficients in (7).

Tri-linear interpolation provides a 24 degree of freedom
interpolation for q which has zero order continuity across
faces.

Flux conservation is implied by the requirement that g
is solenoidal: calculating the divergence of a q represented by
(7) produces,

(b1 + c, +d3) + (e2 + f3)x + (e1+ g3)y

+(f1+a2)z+h1y2+h2xz+h3xy=0. (8)

Equation (8) implies that there are 7 relationships
between the corner values of the components of q which
must be satisfied to ensure that q is solenoidal, thereby
reducing the degrees of freedom of the interpolation to 17.

A weaker condition is to require only that the total flow
of q through a cell is conserved which leads to,

QlH' QIL +Q‘ZH ) QZL * Q3H ) QSL =

AQ, +4Q,+4Q, =0

9)

or

(10)

whech1 =q|dydz; Q2=q2dxdz;Q3=q3dxdy (11)

and L and H denote low and high faces respectively.

Equation (10) is a weaker requirement than (8) and
leads to a single condition which is the same as ensuring that
q is solenoidal at the centre of the cell only. An interpolation
scheme for which q is solenoidal throughout the cell can be
said to be strongly solenoidal. One satisfying only (9) is
weakly solenoidal.

It has been suggested before, (e.g. Mallinson 1988),
that a non-solenoidal interpolation can lead to consistency
defects in stream line tracing. Many of the the test flows used
to evaluate stream line tracking algorithms (Mathew and
Wilkes 1986) are so simple that the discrete field satisfies
equation (8) and the tri-linear interpolation is strongly
solenoidal. In fact for one of the most common test problems,
that of pure rotation represented by a rectangular mesh, the
tri-linear interpolation is an exact solution for the velocity in a
cell and the test is too simple to give reliable extrapolations to
more general flows.

The issue of whether simply ensuring that an
interpolation is weakly solenoidal is sufficient to ensure that
stream lines behave consistently will not be resolved by this
discussion which explores the roles that potential functions
can have in generating strongly solenoidal interpolations.
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Figure 2. The relationship between the iso-surfaces of
two scalar potentials, and a line of vector field.

THE ROLE OF SCALAR POTENTIALS

A solenoidal vector field can be expressed as the cross
product of the gradients of two scalar potentials,
g=VixVg . (12)

Since the divergence of the right hand side of (12) is
identically zero, the scalar functions can be chosen arbitrarily
and g will remain solenoidal. The representation has the
useful property that q is tangential to surfaces on which
either f or g are constant. For a mass flux field these surfaces
are stream surfaces.

Intersections of f and g iso-surfaces are curves which
are tangential to q and are thus the lines of q. These
properties are illustrated in Figure 2 and by the visualisation
in Figures 3 and 4 which were generated during the
evaluation and testing of the tri-linear f-g algorithm described
later in this paper. The scalar functions in these Figures are,

fedly-1 7 +(x-2)-2x+2-3) +1 (13)

g=4y+4(x—z)2—5. (14)

The two surfaces, f = 7.5 and g = 6.0 in Figure 3
intersect to form the closed vector line in Figure 4.

The scalar potentials have another very useful
interpretation which can be visualised by constructing an f-g
diagram which is a plot of one function against the other.
Equation (13) can then be interpreted a transformation from
three-dimensional space into the two-dimensional space of the
f-g diagram. Consider, for example, the flow (Q) of q
through the z = constant plane in Figure 5.

_ _ _ r9(f.g) B
Q= l{q.da = [J;fq3dxdy = lj;jmdxdy = E{j:dfdg . (15)

The flux through the region R on the surface z=constant
is numerically equal to the area of the transformation of R in
the f-g, diagram. This result can be extended to any closed
region on an arbitrary surface in real space.

The lines of q, being curves in real space on which
both f and g are constant, are points in the f-g diagram. The
diagram is therefore a representation of the flow in which all
the stream lines have been straightened and aligned so that
they are pointing into the page. Stream lines can be tracked by
locating real space points which are transformed to the same
point in the f-g diagram.

For recirculating flows at least one of the stream
functions must be multi-valued, severely limiting the f-g
diagram's usefulness as a "whole field" visualisation
technique. The diagram can, however, be usefully employed
to generate efficient procedures for constructing vector lines
through individual cells in a computational mesh.

If q represents mass flux, the scalar potentials are the
the three dimensional equivalents of the two dimensional
stream function and are called dual stream functions.



Figure 3. Visualisation of two iso-surfaces for the potentials
defined by equations (14) and (15).

DUAL STREAM FUNCTION METHODS

Mallinson (1988) described a stream line tracing
method which relied on the assumption of a simple
interpolation for g to perform an analytical integration of (3)
over a mesh cell. The method was shown to produce
consistent results for two-dimensional flows and there was
no need to choose integration step sizes. This method is
revisited here and compared with an equivalent formulation
based on scalar potentials, the purpose being to demonstate
analytically the equivalence of the two appraoches.

The interpolation scheme assumed that the flow
components for q were represented in terms of flow rate, as
defined by equation (11), by,

Q, =Q, +AQx; Q, =Q, +AQyy: Q, =Q, +AQ,7 (16)

Equation (2) now separates and can be integrated to
yield, for Q; say,

Q1 AQ]
In —Q_* =E—(s-s*) an

1

where Q¥ and s* correspond to an initial point (e.g.
entry point into the cell) on the line. The path of a ¢ line is
governed by,

i & ==L % RS I 5 (18)
2,"\q)73q,"\ )~ 4, "\ q
g Q
Y :
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Figure 5. Transformation of the region R on a z=constant
plane to R' in the f-g diagram.
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Figure 4. A vector line constructed by finding the intersection
of the surfaces shown in Figure 3.

By seeking f and g functions of the form

a_b_c d e f
r=AQQQ;  E=BQGQ a9
it can be shown that
a+d=1; b+e=1; c+f=1. (20)

Moreover, two of the powers can be chosen arbitrarily. A
particularly convenient choice is b=0 and f=0. The solution
for this case is,

- AQ,/AQ, -AQ, /AQ,
B) %
QSL Q]L AQ2AQ3 Q]L
@1
A line of g may be traced by solving,
f=1%; g=g* (22)

where f* and g* denote f and g values corresponding to an
initial point on the line. Equation (21) can be used to evaluate
both sides of equation (22) and the result after a little
manipulation is equation (19). The two approaches have been
demonstrated to be equivalent.

Equation (22) transforms y-z planes through a mesh
cell into rectangles in the f-g diagram. Transformations of the
x-z and x-y planes have two straight and two curved edges
(except for the trivial case where all three components of g
are constant). This curvature causes some difficulty in the
application of (22)'in a general purpose stream line tracing
algorithm and it is desirable to seek interpolations for the
potentials which lead to f-g representations that have straight
edges. This led to the tri-linear stream function method
described below.

Tri-linear Stream Functions

Starting with tri-linear interpolation formulae (5) for f
and g, expressions for the components of q can be
developed. Matching these expressions to the spatial variation
of the components of q around a cell is the essential element
of the method which is described in detail by Kenwright and
Mallinson (1992). The ensuing representation has 11 degrees
of freedom, which are adjusted to match the components of q
and their derivatives at the centres of cells. The number of
degrees of freedom is less than the tri-linear velocity
interpolation, but the interpolation yields expressions for each
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Figure 6. The f-g diagram resulting from application of the tri-
linear scalar potential interpolation to the flow
through a typical mesh cell.

qi which are quadratic in the coordinate parallel to the
component. The resulting representation of the flow of q
through a cell has straight edges (Figure 6).

The procedure for constructing q lines within
computational cells consists of the following steps.

1. For each cell, evaluate the stream functions and
construct the representation shown in Figure 6.

2. Given a point within the cell, calculate its f-g image.

3. For that f-g point, determine the faces that surround it.
(It is this step which is difficult if the edges of the f-g
representation are curved.)

4. Calculate the real space image of the f-g point on the
exit face.

Evaluation of the performance tri-linear stream function
algorithm

Stream lines produced by the new algorithm, are
consistent with the solenoidal condition. It does not produce
false spirals for two-dimensional flow and stream lines do not
"stick to" or pass through solid boundaries. A typical stream
line for a well known flow is shown in Figure 7. Differences
between the stream lines produced by this algorithm and
those produced by direct integration or tri-linear velocity
interpolation - Runge-Kutta integration have been observed,
in particular, close to the axes of recirculating flows.
Measures for quantifying the differences are being developed.

The computational efficiency of the new method was
evaluated by applying it to a test velocity field defined by,

(23)

q1=ax~by; q2=bx+ay; q3=-2az+c.

Figure 7. Example stream line constructed using the dual
stream function method for flow in a cavity with a
sliding top.

Equation (23) was used to produce discrete values
throughout a rectangular domain. Results are presented for
the case where the stream functions were pre-evaluated and
for the case where they where calculated "on the fly" as each
cell was encountered.

Usually, the Runge-Kutta integration of the tri-linear
velocity interpolation uses adaptive time stepping. The tests
reported here used a fixed number of time steps to cross each
cell. Typical adaptive procedures use between 1 and 10 time
steps per cell with 5 being a representative average. Tests
were performed for these three cases.

The times reported in Table 1 are for the calculation of 9
stream lines and were obtained on an IBM 4341 computer.
Tabulations are the average of three runs and the relative
results are normalised by the time for the new method using
"on the fly" evaluation of f and g.

The single time step case indicates that the new
algorithm, despite its greater complexity, involves
approximately 75% of the work associated with a single step
advance through the Runge-Kutta algorithm.

The evaluation of the scalar potentials involves
approximately 38% of the workload of the new algorithm.
This represents the potential speed gain associated with pre-
evaluation which is offset against the storage of at least 11
variables for each cell.

The speed improvements offered by the new algorithm
are approximately 4 and 8 when compared with 5 and 10 time
steps respectively for the conventional method. The
performance of the new algorithm improves slightly as the
number of mesh cells increases.

Stream function Conventional
Stored | "on the | 1 step | 5 steps | 10 step
fly" per cell | per cell | per cell
10x10x10 | 0.28 0.45 0.58 1.84 3.40
20x20x20 | 0.86 1.38 1.89 6.01 11.2
20x20x40 | 1.25 2.05 2.84 9.00 17.4
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Table 1. Times taken to produce a test set of stream lines using
the dual stream function and conventional methods.
Times are given in seconds (IBM4341).

CONCLUSIONS

The use of scalar potentials to represent a vector field
within a mesh cell guarantees that the field will be solenoidal.
The transformation from real three-dimensional space a two-
dimensional scalar potential space leads to the construction of
consistent and efficient procedures for constructing the lines
of the vector field.
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