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ABSTRACT

We have implemented Pullin’s kinetic theory based
Equilibrium Flux Method (Pullin, 1980) on a parallel
supercomputer {the Intel iPSC Touchstone Delta) to study
the leeward flowfield of a blunt nosed delta wing at
hypersonic speeds. Computational results are presented for
a series of grids for both inviscid and viscous flows. Of
particular interest are the vortex and shock structures in the
leeward flow that are evident only with the high grid
resolution afforded by the use of the parallel computer. In
addition, some experiences of developing a CFD code for a
parallel computer environment are discussed.

INTRODUCTION

The design of reusable spacecraft such as the Hermes
(currently under development by the European Space
Agency) will be enhanced by an accurate computational
prediction of the flowfield during hypersonic re-entry into
the atmosphere. This is particularly important on the
leeward side of lifting surfaces where vortex phenomena
have been judged responsible for intense local heating
(Whitehead, 1970). The combined effects of the high
spatial grid resolution necessary for accuracy, the
complexity of model used and the three-dimensionality of
the flow mean that these computations can only be
performed in a reasonable amount of time by machines of
the ‘supercomputer’ class.

The speed of a single processor has been shown to be
asymptotically approaching a limit imposed by physical
considerations (Denning, 1985). However, performance in
excess of this limit can be achieved by dividing the
necessary amount of computation between a network of
processors which proceed to compute in parallel. The
development of computer codes capable of being executed
on such machines has been identified as one of the pacing
items in CFD (Chapman, 1992; Steger & Hafez, 1992).
However, it is claimed that software development has been
lagging behind hardware development by 5 to 10 years
(Peterson & Ballhaus, 1987).

In light of this claim, this work was conducted on a
parallel supercomputer - the Intel iPSC Touchstone Delta
at the California Institute of Technology. The Delta is an
example of a MIMD (Multiple Instruction stream/Multiple
Data stream) machine or ‘multi-computer’ (Flynn, 1966)
and is constructed from 512 Intel 1860 processors
connected in a two-dimensional mesh. There is no shared
memory therefore transfer of information between
processors is accomplished using message passing. This
computer is capable of a theoretical maximum speed of
32 Gflops (billion floating point operations per second) in
64 bit double precision mode and has 8 Gbytes of primary
memory available with 200 Gbytes of disk storage.

NUMERICAL METHOD

The Equilibrium Flux Method (EFM) is an explicit
finite volume shock-capturing method which mav be
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applied to the solution of the Euler and Navier-Stokes
equations for compressible fluids. EFM can be derived by
consideration of the Boltzmann equation which provides a
ispatilal and temporal description of the gas at the molecular
evel -
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where the molecular distribution function in phase space is
given by the product of the molecule number density » and
the molecular velocity distribution function f, where r and
¢ are the position and velocity of a molecule in physical
space at time ¢.

A set of conservation equations for a gas obeying
Boltzmann’s equation can be obrained by taking moments
of the equation using an algebraic vector O consisting of
the molecular quantities [m, me, 1/2me.c]. A moment of the
phase space distribution function is given by

callisions
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Now consider an tetrahedral element or cell of physical
space with volume V; and surface area §j,. We will define
a local set of coordinate axes(n,p.q) such that a is normal
to the cell face and pointing outward, and p and q
approximately lie in the plane of the face and form an
orthogonal base set. Integrating the moments of the
Bolizmann equation over the cell and applying the
divergence theorem to the convection term gives

%ﬁgﬁ UpdV +§f FpdS=0
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where U, is a set of conserved quantities per unit volume
given by
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and F, is a set of fluxed quantities,

F,= _[(nf)Qc-ﬁdc. -

The integral of the collision term is equal to zero as the
;nolc.cu_la; quantities O are conserved in each collision. It is
implicit in the derivation of F,, that both outward and

inward fluxes are accounted for. For each cell face, the flux
expression can be split into two parts: an outward or

forward moving flux F, and an inward or backward
moving flux F,” where
= Ld =
Fy=F' +F, .
(6)
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In a local coordinate system (figure 1), the set of forward
and backward fluxes are then given by

o e 0

Ey = J J I(rz“ﬂ')andcndcpdcq.

O
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and e (8)

For EFM it is assumed that the velocity distribution
function on each side of the cell interface tends towards an
equilibrium distribution dependent upon local flow
conditions and given by Maxwell’'s equilibrium

distribution function,

=t =B \exp(-p2(c—ay
f"fo“[ﬂ_m}c P( B(c C)) ©)

where f is the reciprocal of the most probable thermal
speed, and is defined by

P
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The form of the distribution function for the normal
component at the cell interface is shown in figure 2. The
transport of mass, momentum and energy across a cell
surface can be calculated analytically. A convenient form
of the flux expressions is described by Macrossan et al.
(1991).

After transforming flux expressions into a global
cartesian system, the mass, momentum and energy in each
cell is updated by using the product of the nett flux across a

cell interface, the face area and a timestepAr. The method
is made second order accurate in space by using a min-mod
strategy (van Leer, 1979) to estimate properties at cell
interfaces. Simple Euler timestepping is used subject to the
Courant-Friedrichs-Lewy (CFL) condition.

The gradients necessary for the estimation of viscous
terms are obtained by using a secondary staggered grid,
the vertices of which are the centroids of the primary grid.
The use of the divergence theorem and central differences
allows the gradients to be estimated at cell vertices in the
primary grid. Sutherland’s formula is used to estimate
viscosity as a function of temperature.

FREESTREAM CONDITIONS AND BODY
GEOMETRY

The body considered in this work was a thick blunt
nosed delta wing of 70 degrees sweep, flying at an angle of
attack of 30 degrees. The freestream Mach number was
fixed at 8.7 with a freestream temperature of 55 K.
Laminar flow was assumed for the viscous calculations
with Reynolds numbers ranging from 103 to 106 and a
fixed wall temperature of 300 K.

The original computational grid used was a C-O type
grid consisting of 36 x 40 x 72 cells in the downstream,
radial and azimuthal directions respectively. Due to
symmetry about the x-y plane only one half of the bedy
was modeled (z20) as shown in figure 3. This grid was
subsequently truncated or refined using four point
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Lagrange interpolation to produce two further grids.
Table I describes each of the grids.

Table [ Grid Descriptions
Grid | Resolution] Dimensions Cells
1 coarse 18 x20x 36 12,960
2 medium 36x40x72 103,680
3 fine 72 x 80 x 144 829,440
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FIGURE3 DELTA WING GRID

PARALLEL IMPLEMENTATION

The Parallel General Purpose 3-Dimensional
(PGP3D) code was written in standard FORTRAN 77 and
uses the communication calls of the Parasoft Express
operating system which allows portability between a
number of parallel machines. In addition, the use of
dummy libraries enables the code to be run on sequential
type machines without modification. Only one version of
the code needs to be maintained, with identical copies of
this code being loaded into every processor at runtime.

Parallelization was achieved by distributing the
physical domain of the grid amongst the available
processors in such a way that the boundary surface area of
each sub-grid was minimized. This reduces the amount of
communication between processors as compared to
computation and thus the overhead associated with using
this machine architecture.

A series of ghost cells are used around the perimeter
of each sub-grid to implement boundary conditions. Before
each timestep the values of primitive variables in these
cells are updated by communicating with the neighboring
processor which has the recently calculated value in
memory. Thus the algorithm consists of alternate periods
of computation and communication. The communication is
carried out synchronously with each processor waiting for
all others to finish computing before passing values.
Consequently overall speed is dictated by the speed of the
slowest processor. It is therefore extremely important to
balance the computing load between the available

Processors.
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RESULTS

Figure 5 shows streamlines and density contours at the
nose of the delta wing in the plane of symmetry for the
inviscid solution on the finest grid. The bow shock is
clearly detached and the position of the stagnation point
can also be seen. Figure 6 shows surface streamlines for
the same case. At the nose and close to the plane of
symmetry the crossflow velocity component is small,
Further along the leading edge the curvature is such that
the crossflow velocity is large and supersonic. Because of
the symmetry condition in the x-y plane a shock is
produced at the surface which causes the flow to separate.
This produces a vortex which causes the fluid between the
shock and the plane of symmetry to flow in an outboard
direction.

Figure 7 shows a comparison of the pressure field of
the inviscid solution on the three grids. The comparison is
made at the downstream station x/L = 0.8. Although the
bow shock position is about the same for each case, the
larger number of cells in the radial direction of grid 3
clearly allows greater resolution of the shock. The flow
undergoes a large expansion around the leading edge but
remains attached. The crossflow component of velocity
must go to zero at the plane of symmetry which causes the
inbound flow to undergo a compression. For the flow close
to the surface this occurs approximately midway along the
semi-span.

In the solution for the highest resolution grid (grid 3) a
shock system is evident. This structure is similar in many
respects to that computed by Marconi (1989) for the flow
over a circular cone under similar freestream conditions.
The flow structure can be seen more readily in figures 8
and 9. The crossflow shock is of sufficient strength to
cause the flow to separate with a contact surface rolling up
into a vortex. Just away from the surface the crossflow
shock is oblique and the crossflow velocity remains
supersonic as it passes through the shock. Again the
symmetry condition requires this supersonic flow to pass
through another crossflow shock that sits approximately
above the vortex core. The fluid close to the plane of
symmetry is accelerated by the presence of the vortex
sufficiently to produce a supersonic cross flow velocity in
the direction of the wing surface and is again shocked. As
the flow is turned outboard and parallel to the surface it
undergoes a series of expansions and compressions before
being turned away from the surface on the inboard side of
the separation streamline. The appearance of these shocks
about the periphery of the vortex has led Marconi to
describe such systems as ‘pinwheel shocks’.

For the viscous calculations, the position and strength
of the vortex was found to be similar to that of the inviscid
case, even though the flow separated much further
outboard. No cross flow shock structures were observed in
the viscous cases, but in the region where the vortex first

appears a region of heat transfer to the wing surface was
seen.

PARALLEL PERFORMANCE

The PGP3D code was run on different numbers of
processors to gauge the efficiency of running on multiple
processors. For the viscous calculations, the measured
efficiency for all 512 processors was approximately 85%
(80% for the inviscid runs), resulting in a speedup of about
400. Even with a conservative estimate of 10 Mflops per
processor, this constitutes performance of several
gigaflops,

CONCLUDING REMARKS

The high computing performance afforded by parallel
computers allows a depth of detail and turnaround times
unavailable with sequential type computers, It is hoped that
these results encourage others to expend the additional
time and effort required to develop codes for the parallel
computer environment.
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