11th Australasian Fluid Mechanics Conference
University of Tasmania, Hobart, Australia
14-18 December 1992

3C-4

A NUMERICAL INVESTIGATION OF THE NONLINEAR INTERACTION
OF SHORT INTERNAL WAVES WITH INERTIAL WAVES

C. MACASKILL! and D. BROUTMAN?

1School of Mathematics & Statistics, University of Sydney, NSW 2006, AUSTRALIA

28chool of Mathematics, University of New South Wales, Kensington, NSW 2033, AUSTRALIA

ABSTRACT

Throughout the world’s oceans there is internal
wave activity. Extensive measurements have shown that
velocity and temperature spectra are well-described by
a universal form, (see, e.g. Garrett and Munk, 1979).
The Garrett-Munk model is essentially empirical, and
does not take into account many processes which are
believed to control spectral shape and energy levels, such
as nonlinear interactions and refraction by currents.

A Fourier spectral model has been developed to
investigate some new processes that are likely to have
an important influence on the high wavenumber part of
the internal wave spectrum. These short waves are prob-
ably responsible for most of the dissipation of internal-
wave energy, and are strongly refracted by the large-
amplitude inertial waves that are present at all depths
in the ocean. The interaction between short waves and
inertial waves is studied numerically and agreement is
found with the predictions from ray calculations. It is
then demonstrated that the refraction process generates
a vertical wavenumber spectrum consistent with an m =2
power law (where m is vertical wavenumber), in a time
corresponding to only a few inertial periods.

1. INTRODUCTION

In this paper the interaction of an inertial fre-
quency, large amplitude wave with a short internal wave
packet is treated using a spectral approach. Periodic
boundary conditions are imposed, and Fourier transform
techniques are used to approximate spatial derivatives.
A high order Runge-Kutta time integration scheme is
used, which ensures a large stability limit. In particular
the effects of rotation are discussed and contrasted with
the non-rotating case (Winters and D’Asaro, 1989). To
include such rotation, we require a three-dimensional ve-
locity field. However, the model is reduced to a simpler
form where only two-dimensional interactions need be
treated by retaining all three velocity components, but
making all flow variables independent of the third di-
mension, an idea used in a similar context by Holloway
(1984).

There are a number of assumptions made in this
model. As stated above, all interactions are two dimen-
sional only, so that all energy is contained in modes that
lie in a vertical plane. The inertial flow has no horizon-
tal dependence at all; though idealized, this is consistent
with the internal-wave dispersion relation for waves of

inertial frequency. In addition, the amplitude of the
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background inertial wave is significant but not large by
oceanographic standards, and the internal wave packet
has relatively small amplitude. Despite this, amplitudes
are large enough to display some of the more interesting
refractive changes described in the ray theories of Brout-
man (1984, 1986) and Broutman and Young (1986) but
small enough to ensure that no wave-breaking takes
place. It is shown that the basic mechanisms described
in these papers are the appropriate ones for the sim-
ple flows described here. On the other hand, features
not previously described in such flows, particularly the
evolution of the time frequency and wavenumber energy
spectra, show interesting similarities with the more com-
plicated internal wave evolution models, such as those
of Henyey et al (1986) and Shen and Holloway (1986)
(see also the review by Miiller et al, 1986). In particular,
it is found that the vertical wavenumber spectra evolve
very quickly, as opposed to the horizontal wavenumber
spectra, which are essentially unchanging in time, so
long as there is initially no horizontal dependence in
the near inertial background velocity field and the in-
ternal wave amplitudes are moderate. In addition the
high wavenumber, vertical wavenumber spectra evolve
over several inertial periods to a power law form, inde-
pendent of the detailed dynamics. By contrast the low
wavenumber part of the vertical wavenumber spectrum
is more sensitive to the precise form of the initial short
internal wave packet, in particular its dominant vertical
wavenumber.

Thus the high wavenumber structure is shown to
be due to the refraction of short waves by the large
scale background (inertial) flow and hence may be pre-
dicted by first order ray theory. In particular, the ob-
served density perturbations may be predicted in this
way. By contrast, small-scale nonlinear interactions gen-
crate perturbation velocities at the inertial frequency by
mechanisms similar to those of wave-mean flow interac-
tion, as described by Broutman and Grimshaw (1988).
These perturbations are found in the horizontally aver-
aged motions.

2. FORMULATION

On taking cartesian coordinates (z,y,z) with z
vertically upwards, making the Boussinesq approxima-
tion, and ignoring derivatives in the y— direction, the
equations of motion are
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Here ¢ = p/po. The fluid velocity is u = (u,v,w), p is
pressure and p is density, where p = p’ + po with py(z)
the mean density profile. Since the buoya.ncy frequency
N is assumed constant, and N? = -9——”— the mean
density increases exponenha.lly with depth Here g is
the acceleration due to gravity, which acts downwards,
and v is the kinematic viscosity. In the V? operator,
y—derivatives have also been set to zero.

The inertial frequency is f. Note that in the ab-
sence of rotation, where f = 0, there are no contribu-
tions from the velomty v and it may be ignored. Finally
o= the scaled density perturbation due to the pres-

ence gf internal wave motions, satisfies
%tg-'"ug +w§——N2w+Pr'] vVie =0, (2)

which has been derived with use of the continuity con-
dition V - u = 0. The Prandtl number Pr is defined
by Pr = &, where & is the thermal diffusivity, and is
assumed to be equal to one henceforth.

A vorticity-stream function formulation is em-
ployed, where the stream function ¥ is defined by

u =1, and w = —th,.

The three-dimensional definition of vorticity is em-
ployed, where the vorticity vector is given by the curl
of the velocity vector. The equations (1) and (2) then

become

~J(,¢) - ——f*ﬂNZC—U
§——J(1,l", v) 4+ fu— vV =0 (3)
c')g —J(%,a) = N*w — vV2%6 =0,
where the Jacobian J(a,b) = g—‘;g—f — g}g—‘:, and where

¢ = w; — w; is the y— component of vorticity.

The solution procedure involves time-stepping
equation (3), using old values of (u,v,w),1,¢ and o
at timestep n, say, to determine ¢,v and & at timestep
n+1. Then the Poisson equation ¢ = V%1 is solved, us-
ing Fourier methods, to find the stream function at time
n + 1, and hence u and w, the velocity components in
the vertical plane, may be determined by differentiation,
again using a spectral approach.

A splitting technique is used for the dissipative
terms. Thus for each Runge-Kutta time-step, the equa-
tions are first solved ignoring dissipation. Consider, for
example, the vorticity equation. At the end of cach step,
the equation

¢

2
at o

(4)
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is solved exactly over (tn,tny1) by taking the Fourier
transform to find

% +4n* (k2 + m* Wi =0,

(5)
where ( is the Fourier transform of ¢, and k and m are
the horizontal and vertical wavenumbers respectively.
Equation (5) is then solved directly and an inverse trans-
form taken to find (. A similar approach is used for v
and ¢. Thus the dissipation enters as a Gaussian filter
at each time step.

The equations are solved in a box, depth [ = 100m
and width w = 100m. Periodic boundary conditions
are imposed in both the z— and z— directions. The
background inertial wave is chosen to have the form

(u,v) = Ug exp(—af(z/1 - 1/2)?)
X (cos(Bz — ft),sin(Bz — ),

where the envelope constant @; = .1 for these simula-
tions, and # = 27/, so that the wavelength of the iner-
tial wave is equal to the depth of the domain. The ve-
locity scale Uy = .03 m/sec. The inertial wave thus gives
rise to a time-varying shear, localized near the middle of
the computational box. There is initially no horizontal
variation in the background flow. The initial short inter-
nal wave packet is set up in a similar fashion, with the
horizontal wavelength equal to the width of the box, and
the vertical wavelength one sixth of this, i.e. m/k = —6
(the minus sign gives group propagation upwards). The
vertical velocity of the internal wave packet is given by

(7)

where the envelope function G(z) for the internal wave
packet is of the form

G(z) = exp(—a3(z/1 - 1/4)?)

(6)

w = AG(z)sin(kz + mz — wt),

(8)

with a; = .075. For the simulations discussed here the
maximum vertical velocity of the internal wave packet is
2.8 x 107% m/sec. The initial horizontal velocities u and
v and the perturbation density ¢ have a similar form
to (7) and are determined by finding the plane wave
solution to the equations (1) and (2) with the advection
and dissipative terms set to zero, and then applying the
envelope G(z) as in (8).

The intrinsic frequency w of the internal wave
packet is given by the internal wave dispersion relation

N2 kz s f2m2

207, .
w?(k,m) = [Egmp

(9)

For the results given below the inertial frequency
f = .0001 radians/sec, and the buoyancy frequency
N = .005 radians/sec. The calculations were performed
on a grid of size 48 x 1024, with 4000 timesteps per day.
A realistic oceanic value of the viscosity v = 10~®m? /sec
was used. For internal wave packets with greater ampli-
tudes, a much larger value of (artificial) viscosity would
be required to suppress numerical instabilities, and in
fact Winters and D’Asaro (1989) resorted to the use




of ‘hyperviscosity’ to resolve their very large amplitude
cases.

3. RESULTS

In Figure 1, we present the perturbation density
as a function of depth and time, at the fixed horizon-
tal location of one quarter of the box width. The in-
ertial wave packet does not appear directly in this fig-
ure, as there is no corresponding density perturbation,
but rather only a horizontal velocity perturbation. The
small-scale internal wave packet can be seen propagat-
ing upwards and then interacting with the inertial flow
in the centre of the box after about a quarter of a day.
Very strong refraction takes place, but after about three
quarters of a day the short internal wave packet escapes.
Because of the periodic boundary conditions, further in-
teractions with the inertial wave take place over the next
day or so. By contrast, with this fairly low value of the
internal wave amplitude, one sees almost total absorp-
tion at the critical layer if the time varying shear is
replaced with a uniform shear of similar magnitude, as
in Winters and D’Asaro (1989). (The critical level in
the non-rotating case is the depth at which the internal
wave horizontal phase velocity is equal to the horizontal
background velocity). The major features of this flow
are clearly reproduced by ray calculations. Ray trajec-
tories have been superimposed on the figure and have
been obtained using the methods described in Brout-
man and Young (1986), except that the ray calculations
give no indication of the phase. No attempt has been
made in these ray traces to model the initial envelope
of the internal wave packet, other than to launch rays
over the region where this wave packet has significant
amplitude. The location of the major refraction, where
the ray path bends sharply, corresponds to the depth
where the phase velocity of the inertial wave equals the
group velocity of the short wave packet.

Depth(metres)

Time (days)

Figure 2 shows the time evolution of the vertical
wavenumber energy spectra. Each of these spectra is
the average over the previous six hours. In all cases,
the energy associated with the original background in-
ertial wave is subtracted out. The spectra are then nor-

malized so that the integral with respect to mode num-
ber at time zero is unity, integrating only over positive
wavenumbers. After a day or so the spectral form is
fairly well established and the potential and kinetic en-
ergy associated with small-scale waves is approximately
equi-distributed.

In Figure 3, the vertical wavenumber energy spec-
tra averaged over the whole time period of the calcu-
lation are displayed. It is apparent that there is a
well-defined m™? region of the spectrum from a scale
of about 15m down to about .3m, after which there is
an exponential decay of energy. Also shown in the fig-
ure are the spectra for a run where the initial vertical
wavenumber of the short internal wave packet was given
by m/k = —1, and one can see that the same general
behaviour, although for scales larger than 15m the m 2
slope is less clear.

4. CONCLUSIONS

Numerical simulations of the interactions of small
scale waves with large scale inertial waves have been per-
formed. These simulations have confirmed the earlier
ray-theoretic work of Broutman and Young (1986) and
have shown how the critical layer absorption predicted
in earlier work with time-invariant shear is modified by
the presence of rotation. This has particular relevance
to the mechanisms of breaking and hence dissipation of
internal waves. Future work is required to determine
how, and with what frequency, breaking takes place in
the presence of rotation when the internal wave ampli-
tudes are larger.
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Figure 1. Perturbation density as a function of depth and time, showing an internal
wave propagating upward and interacting with the time varying shear due to the
presence of an inertial wave centred at a depth of 50m. The ray paths overlaid
have been calculated using the methods deseribed in Broutman and Young (1986).
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Figure 2. A sequence of vertical wavenumber energy spectra showing the evolution
of a power law spectrum from an initial narrow-band wave packet. Both potential
and kinetic energy and shown; in each case the kinetic energy level is slightly

greater. (The logarithms are base 10).

It has also been demonstrated that refraction is
a robust mechanism for generating power law energy
spectra in relatively short periods of time.
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Figure 3. The time averaged vertical
wavenumber energy spectra.
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