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ABSTRACT

A numerical algorithm using a control vol-

ume discretization is developed for non-Newtonian

flow. The integral-type viscoelastic constitu-
tive equation of the KBKZ family is employed
for modeling polymer melts with strong vis-
coelastic properties. An efficient particle and
strain history tracking method is incorporated
into the control volume context to compute
the “fading memory” stress tensor, and the
non-Newtonian stress contribution is treated
as a source in the control volume. Numerical
modeling is carried out for the abrupt circu-
lar contraction flow of low density polyethy-
lene (LDPE) melts, which is characterised by
a strong corner vortex/recirculation growth as
the elasticity in the flow is increased. A com-
parison of the results with the actual experi-
ments as well as finite element computations
shows very good agreement.

1. INTRODUCTION

In recent years some rapid progress has been
made in the field of numerical simulation of
non-Newtonian flow, mainly due to the use
of realistic integral type constitutive models,
particularly the KBKZ model (Luo and Tan-
ner, 1986, 1988; Dupont and Crochet, 1988).
The KBKZ model with multiple relaxation
times provides good fits of shear, elongational
and normal stress data for some polymer melts
such as low-density and high-density polyethe-
Iyne. This model has been shown to work
well for various extrusion and entry flows com-
mon in polymer processing industry. Gener-
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ally speaking, integral-type models are more
difficult to apply in numerical work than dif-
ferential models, due to difficulties in doing
accurate and efficient particle tracking and
strain tensor calculations.

Up to now all the full numerical simulations
of integral-type non-Newtonian fluids have used
Finite Element Method (FEM). Even relatively
efficient FEM algorithms for strain tensor cal-
culation are still very time consuming, often
at the expense of limiting mesh size (Luo and
Mitsoulis, 1989). The Control Volume Method
{CVM) provides a more efficient alternative
to FEM in dealing with integral-type non-
Newtonian models. The contribution of non-
Newtonian stress can be naturally treated as a
source term, and the particle and strain his-
tory tracking can be made very efficient by
the simple grid structure in CVM, at least in
the case of simple geometries. The cost of
3D simulation of non-Newtonian flow using
CVM is expected to be much less than FEM.
In this work we will develop the algorithm
for integral-type non-Newtonian fluids in the
CVM context, and demonstrate its applica-
tion to the abrupt circular contraction flow of
polymer melts.

2. THE NUMERICAL ALGORITHM

The flow is governed by the conservation
equations of mass and momentum. For an in-
compressible fluid under isothermal, creeping
flow conditions (Re = 0) we have




V-v=0
0=-Vp4+ V.71

(1)
(2)

where v is the velocity vector, 7 is the extra-
stress tensor and p is the scalar pressure. The
constitutive equation that relates 7 to the de-
formation history is a KBKZ equation pro-
posed by Papanastasiou et al. (1983) and is
written as:
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where A, and a; are the relaxation times and
relaxation modulus coefficients at a reference
temperature Ty, respectively, « and 3 are ma-
terial constants, and I, I,-1 are the first in-
variants of the Cauchy-Green tensor C; and
its inverse C;!, the Finger strain tensor.

Because the non-Newtonian stress is depen-
dent on the entire history of deformation rate
in the fluids, as indicated by equation (3),
fully coulpled solution strategy is almost im-
possible to apply, and the velocity and stress
have to be solved iteratively, in addition to
the coupling of velocity and pressure.
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2.1 SIMPLE for Non-Newtonian Fluids

The SIMPLE family of algorithms was first
introduced by Patankar and Spalding (1972)
and 1s described in detail by Patankar (1980).
It has been widely used in both lamilar and
turbulence viscous flow computations. For
integral-type non-Newtonian fluids, however,
the SIMPLE method as it is cannot resolve
the non-linear coupling between velocity and
stress. In FEM the non-Newtonian contri-
bution from integral stress equation is often
treated as a body force. A natural extension
of this idea is to put non-Newtonian stress in
the source term for the control volume. Let us
split the extra stress tensor 7 into two parts:

7= (1 —2pD) 4+ 2uD (4)

where D is the rate of deformation tensor
and g is the viscocity. The first part contains
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the net non-Newtonian contribution and will
be put into the source term, and the second
part is simply the familiar viscous stress. De-
noting the net non-Newtonian contribution as
T, The r-component of equation (2) for axi-
symmetric flow can be written as

10, du 18, 6u u
Mo ar) + 1oy ~ ) =
dp 1.8 9
o "yl T+ 50T~ Tul - (5)

Similar form can be written for the z-component.
Using the staggered grid (Patankar, 1980) for
velocity components, integration of equation
(5) over the U-cell control volume 2rrcdrdz
gives the following discretized form

clUc = apug + awuw + ayuy + asus + SN
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where the superscripts e, w, w, n stand for
east (4r), west (-r), south (-z) and north (+z)
faces of the U-cell, and subscripts E, W, N, S
indicate the neighbouring velocity nodes, and
both ¢ and C stand for the centre point in the
control volume. SN is the source term due to
net non-Newtonian stress.

The discretized equation for z-component
is similar. The pressure correction equation is
derived from continuity, thus having the same
form as in a pure viscous flow.

2.2 Strain Tensor Calculation

As in FEM, the following relations are used
in finding the strain history of a particle rel-
ative to the configuration at the present time
t,

DF(s)
Ds

= —L(s)F(s) (6)
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where s = t — ¢’ is the residence time of the
particle, L(s) is the velocity gradient, F(s) is
the deformation tensor relative to the present
configuration, C~!(s) is the Finger strain ten-
sor, and I is the unit tensor.

An improved Euler method, i.e. the predictor-

corrector formula is chosen for calculating the
components of F
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where the primes indicate the values at time
t'. For incompressible fluids, the determinate
|F| = 1, and one can prove the above numer-
ical scheme gives |F| = 1 + O(ds?).

3. ABRUPT CONTRACTION FLOW

The abrupt circular contraction flow exper-
iments of White and Kondo (1978) were done
with low-density-polyethylene (LDPE) melt

under isothermal conditions. The material
parameters in the KBKZ model to fit the shear,
elongational and normal stress behavour of
LDPE melt are those ued in previous FEM
computations (Dupont and Crochet, 1988, Luo
and Mitsoulis, 1989). Referring to Fig.1, let
Ly, L,.s be the lengths of the downstream and
upstream tubes, respectively, and let Dy be
the diameter of the downstream tube. %;'— =
5.75 in the experiments. For our calculations
we have chosen the ratios %% and L to be
20 and 12, respectively. For the bounda.:ry
conditions we assume there is no slip along
the walls and impose a fully-developed KBKZ
flow profile at the entry and at the exit sec-
tions. The relative strain tensor upstream of
the entry section is calculated on the basis of
the fully developed profile.The computations
were performed on the grids shown in Fig.2,
which contains 770 control volumes.

The vortex size in the entry flow can be

quantified by the opening angle ¢ defined schemat-

ically in Fig.1. White and Kondo (1978) mea-
sured this opening angle as a function of the
dimensionless recoverable shear (or stress ra-
tio) Sg, which is a measure of elasticity level
in the flow, and is defined as the ratio of the
first normal stress difference N; to twice the
shear stress 7, i.e. Sp = 2.
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The incremental loading of elasticity is ap-
plied as part of the iteration strategy. Typ-
ically, 1500 iterations (sweeps) were needed
for reducing relative change of velocity to less
than 107°, and relative change in pressure to
less than 10~3. Despite finer mesh and more
iterations, the computing time is still signifi-
cantly less than FEM computations.
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Figure | Schematic diagram of the circular abrupt contraction geometry and definition of the vortex opening angle ¢
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Fig.2 Control volume grid
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Fig.3 Streamline/vortex patterns at several Sp values.

Fig.3 shows the streamline/vortex patterns
at various Sg values. The rapid vortex growth
with elasticity number Sp is quite remarkable.
Note in Fig.3 Sp = 0.0 plot corresponds to
pure Newtonian flow. Quantitatively, the pre-
dicted opening angles are very close to expe-
rimantal measurements, as shown in Table 1.
The maximum difference between predicted
(CVM) and measured (EXP.) opening angles
is only about 2 degrees. Previous FEM results
are also shown in Table 1.

6 |
Sr__ | CVM[EXP. FE;\;{_I
154 | 41° [40° |39°
1.85 | 45° |46° |43° |
2.36 | 50° [52° |50°

Table 1. Opening angles predicted and measured.

4. CONCLUSIONS

This numerical study shows the control vol-
ume method is a very attractive alternative
to FEM for the modeling of non-Newtonian
flow. At least in simple geometries the CVM
is much more efficient than FEM in treating
integral-type viscoelastic fluids, and the ex-
tension to 3D is expected to show even greater
advantage of CVM over FEM.
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