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ABSTRACT
The flow fields 1in the neighbourhood of
constrictions in a tube were studied

numerically. The effects on the streamline,
velocity and vorticity distributions as the flow
passes through the constrictions in the tube
were studied for a Reynolds number range of 5 to
200. Constrictions with constriction spacing
ratios of 1, 2, 3 and o were studied for
diameter constriction ratios of 0.2 to 0.6.

NOTATIONS

ao radius of the tube having a constant
cross section.

c1 upstream constriction, c1=(D-dc1)/D

[or-] downstream constriction, ca2=(D-dc2)/D

de openning of the constiction.

s1, 82 distance of first and second
constrictions from inlet plane.

S S = (s2-s1)

vr r—-direction velocity component

vz z-direction velocity component

o centreline axial velocity at infinity

Zi 2 limits of first constriction

Z3,Z4 limits of second constriction

[ stream function

4 vorticity

t time

Re Reynolds number

P pressure

P density

v kinematic viscosity

INTRODUCTION

The flow field in the neighbourhood of
constrictions in tubes has been of great
interest to fluid dynamicists because of its
many engineering applications. This type of
configuration is wused in design of heat
exchangers to enhance 1its heat transfer
performances. Configuration of tubes with
constrictions are also of great interest to
biofluid dynamicists because of their
relationship to localised stenoses in blcood and
urinary flow; and the optimal design of
artificial organs. Viscous fluid flow past
undulating boudaries has also been of great
interest to researchers because of the
importance which it plays in phemomena such as
the generation of wind waves on water; the
stability of a liquid film in contact with a gas
stream; the transpiration cooling of re-entry
vehicles and rocket boosters and film
vaporization in combustion etc.

One of the first numerical work on this type of
problem was done by Lee & Fung(1970) to study
the flow in locally constricted tubes for a
Reynolds number range of 0 to 25. In more recent
work, Wille(1980) studied the pressure and flow
fields in arterial simulated by mathematical
models. Sober(1980) studied numerically the flow
through furrowed channels to investigate the
Reynolds number effects on the separated flow.
Prata & Sparrow(1984) obtained numerical
solutions for a periodic fully developed regime
in an annulus of varying cross section of a
double-pipe heat exchanger. Other recent studies
of constricted flow includes a study of laminar
steady flow in sinusiodal channels by Tsangaris
& lLeiter(1984).

Most of the above studies, however, are for
single constriction flow (ie S/D=w). Few
consider the influence of the upstrean
constriction on the flow fields near the
downstream constriction. In the present work,
the flow behaviour in a double constrictions
tube is studied numerically.

PROBLEM FORMULATION

The geometrical configuration of the wvascular
tube with  double constrictions and its
coordinate system is shown in Fig. 1. Constant
fluid properties are assumed and the flow is
considered axisymmetric and laminar. The
dimensionless governing equations representing
the fluid flow through the constrictions in
their unsteady form are :
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and the vorticity-stream function equation
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The velocities are given by

vr = = — : vz = - - — (3)
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Fig. 1
MODEL OF MULTIPLE CONSTRICTIONS IN TUBES

where the dimensignless variables are definai as
t r = r/as ; z = z/aoc ; Vr = Vr/v s VYV =
[+1]

174 (vwaozl 3 C‘ = &/ {vm/aoJ? t =
t/(ao/vm] and the Reynolds number, Re= v_ao/v.

s *
ve/v Y =

(For subsequent
for simplicity)

expressions, the * is dropped

In dimensionless form, the geometry of the
constrictions are described by the following
bell-shaped Gaussian distribution profile

f(z) =1-ciexp ( - esl z - 51)%) (4)
where ci = constriction ratio ( D - dei)/D

cs = a shape constant

si = dimensionless distance of

constriction from inlet plane.

Refering to Fig. 1, for the variable double
constrictions considered here, ci1=0.5 (ie c1)
for the first constriction and ci (ie cz ) has
values from 0.2 to 0.6 for the second
constrictions; the shape factor cs=0.4; the
distance si=s1 for zi1< z < z2; the distance si=
s2 for z3< z < z4 and ci=0 elsewhere. 21, z2 are
the wupper and lower limits of the first
constriction; 23, =z4 are the upper and lower
limits of the second constriction. si, s2 are
the distance of the first and second
constriction from the inlet plane respectively.
The spacing between the two constrictions is
given by S=(s2-s1) and s1=2.0 in this study.
When the dimensionless spacing ratio S/D=w, this
is equivalent to a single constriction tube with

c1=0.5, ¢s=0.4, si=s1 for zi< z < z2 and ci=0
elsewhere.

For the present study, the incoming flow is
assumed to be Poiseuillean and outflow is
assummed unrestictive (ie a weak boundary
condition is specified). Non-slip boundary

condition is assumed for the tube wall. The flow
is assumed symmetry about its axis with wr=0
along the axis. ie.
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At the inlet, ve=0;vz=(1-1") (5)
a°¢
At the outlet, 2= =0 (6)
dz
i vz
Along the tube axis, ve =0 ; z— =0 (7)
Along the tube wall, vr = vz =0 (8)

NUMERICAL SOLUTION

The tube with the bell-shaped constrictions are
mapped into a rectangular solution domain and
the flow fields are solved with a finite
difference method. The new coordinates system is
defined as follows :

E = Fl[z) =z
n = Fz[r,z] = r/f(z) (9)
The domain in the e-n coordinate system as

defined by Equation (9) is a rectangular region.
In order to obtain better resolution of the
solution near the wall regions while preserving
the second order accuracy of the finite
difference scheme, the rectangular solution
domain is overlaid with a non-uniform mesh with
the grid generator given by

F = 1/2)

(10)
3

%sin e (n + 0.5)

At the node points of the domain defined by
Equation(10), the finite difference solution to
Equation (1) and the other governing and
boundary equations in the e-m co-ordinate, are
obtained through an Alternating Direction
Implicit (ADI) procedure proposed by Samarskii
and Andreev (1963). Successive over-relaxation
(SOR) method with a relaxation parameter of w =
1.1 was used to solve the vorticity-stream
function Equation (2).

RESULTS AND DISCUSSIONS

The study presented here is one portion of an
overall study of flows in regions of the double
constrictions. The analysis is restricted to
steady, laminar flow of a Newtonian fluid
through a rigid tube which has different sizes
of multiple localized axisymmetric
constrictions. For the present study, the first
constriction (ci) of the tube is set at 0.5
while the second constriction (c2) is allowed to
vary from 0.2 to 0.6.

For a given approaching Reynolds number, typical
streamlines and vorticity fields at different
proximity (S/D) of the constrictions in the
present study are shown in Fig. 2 for cz>ci1 at
Re=25 and in Fig. 3 for cz<ci at Re=50. Studies
of the numerous similar flow fields for c1=0.5
with ca<c1 show that, a recirculation zone
usually fills the valley between the two
constrictions for small S/D ratios, with little
changes to the separation and reattachment
peints as the approaching Reynolds number is
increased. A separation streamline divides the
flow into two parts: a recirculating flow field
between the two constrictions and the main flow
field near the centre of the vascular tube with
relatively straight and parallel streamlines.

Streamlines and vorticity fields in similar
studies for c¢1=0.5 and c2>c1 show that as the
Reynolds number increases, the recirculating

eddy between the two constrictions spread beyond



REYNOLDS WUMBER = 25

Fig. 2
TYPICAL STREAMLINES AND VORTICITY CONTOURS
c1=0.5, c2=0.6, Re=25

REYNOLDS KUMBER = 50

Fig. 3
TYPICAL STREAMLINES AND VORTICITY CONTOURS
c1=0.5, c2=0.2, Re=50
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VELOCITY PROFILES AND WALL VORTICITY DISTRIBUTIONS
c1=0.5, cz2=0.6, S/D=1
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Fig. 5
VELOCITY PROFILES AND WALL VORTICITY DISTRIBUTIONS
c1=0.5, c2=0.2, S/D=1
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the second constriction, merging with the eddy
that formed behind the second constriction. This
flow phenomenon significantly influences the
downstream vorticity characteristics near the
second constriction.

Characteristics of the flow through the variable
constrictions with various separation ratio can
also be described by the velocity vector fields
in the tube. The velocity vectors in Fig. 4 and
Fig. 5 are for c2=0.6 and c2=0.2 respectively
with c1=0.5, S/D=1 and Re=10, 100, 200. The wall
vorticity values are shown in the corresponding
figures. The magnitude of the wall vorticity
values increase rapidly when the flow approaches
the constriction and reaching a peak value near
the maximum constricted area. At higher Reynolds
number, the peak wall vorticity value was found
slightly upstream of the maximum constricted
area. At a location downstream of this peak
value, the wall vorticity decreases rapidly and
will reverse to negative values when separation
begins at the wall of the tube. For the first
constriction, it is observed that the peak wall
vorticity wvalue increases with increasing
Reynolds number. For c¢1=0.5 and c2=0.2 with
increasing Re, the merging of the recirculating
eddy from the first constriction with the eddy
formed behind the second constriction resulted
in a negative wall vorticity peak occurring at

the second constriction. However, for c1=0.5
with c2=0.6 , the maximum wall vorticity at the
second constriction (Zmax,2) in the present

investigation is found to be nearly twice that
of the first constriction (Cmax,1). It was also
observed that the rate of increase of max,1 for
the first constriction with Re was higher than
for Cmax,2 of the second constriction.

CONCLUSION
The effect on streamlines, vorticity, flow
seperation and reattachment, velocity

distribution and wall veorticity as the fluid
flow passes through two adjacent constrictions
(c1, c2) are numerically investigated. For
c1=0.5 with «c2>c1 and small constriction
spacings, recirculation tends to fill the valley
region between the two censtrictions with little

changes to the separation and reattachment
peints as the approaching Reynolds number is
increased. For c¢1=0.5 with cz <ci with small

spacing ratios, the recirculating eddy between
the two constrictions tends to merge with the
eddy formed downstream of the second
constriction when the approaching Reynolds
number is increased. This produces negative wall
vorticity peak near the second constriction. For
c1=0.5 and ¢2=0.6, the maximum wall vorticity at
the second constriction is nearly twice that of
the first constriction. However, the rate of
increase of the maximum wall vorticity with
respect to the Reynolds number is higher for the
first constriction than for the second
constriction. If no merging or interacting of
the recirculation eddies occurred, the maximum
wall vorticity near each constriction would
increase with Reynolds  number (Re) and
constriction spacing ratio (S/D).
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