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ADBSTRACT

In the present paper a numerical study of the az-
imuthal instabilities of a baroclinic vortex, produced
in a rotating tank, has been performed. The anal-
isys has been carried out by direct simulation of 3-D
Navier-Stokes equation, written in a rolaling frame,
by means of finite difference. The comparison with
the available experimental data is satisfactory.

INTRODUCTION

In the dynamics of atmospliere and oceans, vor-
tices play a fundamental role. For this reason the
problem of vortices and their instabilities in rotating
{luids, have heen extensively studied in the last years
(Saunders,1973 - Killworth,1980). Unstable mean-
ders of the Gull Stream, for example, are known
to inject parcels of warm water in a colder environ-
ment in the north side and viceversa in the south
side (Robinson,1983). Such isolated parcels gener-
ale baroclinic vortices whose evolution is regulated
by the equilibrium among buoyancy, Coriolis and
centrifugal forces. This flow structures are impor-
tant for their properly of heat and mass transport
(salt, pollutants).

A simiple way of producing a baroclinic vorfex in
laboratory (Grifliths and Linden,1981) is to allow a
region of light fluid, initially constrained by a ver-
tical cylinder, to adjust under gravily in a rolat-
ing tank: the light Muid parcel changes its shape,
reaches the equilibrium configuration and then per-
forms an oscillatory motion around it. The Coriolis
force induces an anticyclonic vortex in the light fluid,
and a cyclonic one in the deeper layer. In a sub-
sequenl phase non axisymmelric disturbances grow
and modify the original circular shape of the front.
The lighier Tuid spreads radially generaling smaller
eddies |, whose number depends on the Richardson
parameter i and on the ratio § = h/I{, where
his the initial depth of the light fluid layer, and
IT is the depth of the whole fluid domain (see fig.
1). Although a simplificd model predicts a stabil-
ily limit, neither in the experiments of Griffiths and

Linden(1981), nor in our numerical simulations sta-
ble flows have heen observed.

THE NUMERICAL METHOD

In a cylindrical rotating [rame the cqualions of
mass and momentum conservation are the following:
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The equation for the density can be writien as
follows:
d
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In (2) we have used the Boussinesq approximation
for density variation.

The equations have been non-dimensionalized

with respect to the characteristic length, velocily

and time, chosen respectively as a (radius ol cylin-

drical zone of light fluid), U = Vhgl and T = :Ti';

= g%’;—q is the reduced gravity. The following pa-
rameters are so oblained:
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where ¢ is the diffusivity of the sall in waler.
Navier-Stokes equalions have been solved with
free-slip conditions at the external boundaries (only
al Lhe tank botiom no-slip conditions have been im-
plemented), while for the density equation the fol-
lowing boundary condilion has heen salisfied:
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T'he numerical scheme used is described in details
in the paper by Verzicco and Orlandi(1992), here
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we suinmarize only the main features. The system
of equations have been solved by a fractional step
method (Kim and Moin,1985). Both viscous and
advective terms have been discretized by centered
2nd order finite difference schemes; the viscous ones
have been calculated tmplicitly, while the advective
ones explicitly. In the 3-D case, in the limit of p —
0, the energy should be conserved: such property
holds for the discrete scheme used.

At each time step a non-solenoidal field velocity is
calculated by using the pressure at the old time step;
a scalar quantity ® is then introduced to project the
non-solenoidal field in a solenoidal one.

The advancement in time of the solution has been
obtained by a hybrid 3-step Runge-Kutta method.

RESULTS

This phenomenon of instability has been studied
in the present paper starting from the experimen-
tal results obtlained by Grifliths and Linden(1981).
The flow is initially driven by the buoyancy forces;
conservalion of angular momentum implies the for-
mation of an anticyclonic flow in the upper layer and
a cyclonic circulation in the lower layer. Such struc-
tures have been observed experimentally and they
are clearly reproduced by the numerical simulations
(fig.2). In fig.3 the case without tank rolation is
depicted: the flow is characterized only by the baro-
clinic vorlicily production; buoyancy forces are not
balanced by Coriolis and centrifugal forces: in this
case the adjustment is very fast, and the free surface
between the fluids averturns, performing a breaking
wave.

When the mitial circular shape of the light fluid is
perturbed, the flow is no longer axisymmetric. The
numerical results show the onset and growtih of in-
stabilities al the fronl, with generation of eddies.

I'ig 4,5 show Lhe cases of perturbation wavenum-
ber n=2,3, in a qualitative comparison with the ex-
perimental results obtained by Griffiths and Linden.
In this case the simulation starts from a configura-
tion with a sinusoidal perturbation.

In order to recognize what is Lhe 'natural’ unsta-
ble wavenumber a lof of cases with initial random
perturbation have been simulated; in fig.6 one of
these cases is shown, in particular when four ed-
dies are generaled. By using the spectral analisys
of the velocity field the growth rate of the unsta-
ble wavenumber in the different situations has been
analised. As in the experimental results, there are
some flows in which several wavenumbers seem to be
unstable: anyway, fig. 7 shows that our results are
in a rather good agreement with the experimental
resulls,
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Fig.1 The numerical rotating tank.
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Fig.2 Axisymmetric flow (Ar = 1., 6 = .5, D = 1073, Sm = 1., Ri = 0.2628, Re = 1025.357):
generation of cyclonic and anticyclonic circulations; contour lines for positive(solid) and negative
values(dashed) of velocity.

Fig.3 Axisymmetric flow without tank rotation (Ar=1,6=5,D=.02 Sm=1., Ri = 00,
Re = 4585.534): evolution of the interface between the two fluids.

FigA Fully 3-D flow: evolu-
tion of sinusoidal initial pertur-
bation (azimuthal wavenumber
n=2, Ar = 1., 6 = 5, D =
107%, Sm = 1., Ri = .2628,
Ite = 1025.357):

a) Experimental plan view pho-
tographs

b) Numerical isopycnal sur-
[aces.
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Iig.5 Fully 3-D flow: evolu-
tion of sinusoidal initial pertur-
bation (azimuthal wavenumber
n=3, Ar=l.,8=.5, DD = 5.T*
-t Sm o= ls Ri = 1498,
Re= Tr4.127):

a) Experimental plan view pho- .

tographs
b) Numerical isopycnal sur-
faces.

Fig.6 Fully 3-D flow: evolution of a ran-
dom initial perturbation.
6=06,D=7+10"" Sm = 1., Ri = .09

Re = 1710.21).

Ar = 1.2857,
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Fig.7 Fully 3 1 flow: evolution of random ini-
tial perturbations.  Azimuthal wavenumber as
a function of Ri = hg'/192%a? and § = hfH.
The lines, drawn ‘by oye’, divide the plane
(R7,8) into regions in which different, wavenum-
bers secem to be more unstable,

a) Solid lines: experiments by Grifliths and Lin-
den(1981)

b) Dashed lines: numerical simulations.




