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ABSTRACT

Large liquid bridges (Lo= 2Ro= 50 mm) placed
between two equal plane circular disks have been
stretched in a neutral buoyancy tank by moving one disk
with a constant velocity. The contour of the deformed
liquid bridge was measured and the velocity field within
the bridge was detected by particle tracing. From the
velocity field the local elongation rates were calculated.
While surface tension forces minimize the surface area,
leading to a contraction of the liquid bridge, friction
forces due to shear and elongational viscosity act against
it. Increasing viscosity tends to form more cylindrical
bridges. The local elongation rates within the liquid
bridges are not homogeneous. In cylindrical shaped
bridges the difference between the highest and lowest
local elongation rate is less than in strongly deformed
low viscosity liquid bridges. The highest elongation rates
occur in the middle of the bridge and are larger than the
theoretical ones calculated for an ideal cylinder.

NOTATION

I,z cylindrical coordinates
u upper disk velocity
Vi, Vz velocity components

vi(r,z), vo(r,z) velocity functions (Chebyshev)
Ca Capillary number

L; Ly liquid bridge length, initial length

R, Rg liquid bridge radius, initial radius
ideal cylinder radius

R(z) contour function

Yrrs V22 components of the rate-of-strain-tensor

é elongation rate

e, Mg OT 7 elongational, (zero) shear viscosity

o surface tension

Trrs T2z components of the stress tensor
..}(zo) average value in cross section z= z,
..}max, min  Mmaximun, minimum value in 0=z<L
Vo irel maximum flow velocity relativ to disk

= overall average

INTRODUCTION

For the accurate determination of the elongational
viscosity of viscoelastic liquids the test fluid must be
exposed to a pure elongational flow, in which a
cylindrical liquid sample always remains cylindrical and
the elongation rate is constant with respect to space and
time (Walters, 1975; Petrie, 1979). In some experimental
methods the fluid is placed between two disks by surface
tension and wall adhesion, forming a liquid bridge (Matta
and Tytus, 1990; Sridhar et el., 1991; Berg et al., 1991).
The liquid bridge is stretched by increasing the disk
distance. While surface-tension forces try to deform the
bridge shape to achieve minimum surface area, shearing
friction, inertia and flow resistance due to elongational
viscosity act against it. The change of the bridge shapes
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and the velocity field, therefore, depend on the force that
is dominant in each case of stretching (Kroger et al.,
1992). The initial cylindrical liquid bridge does not stay
cylindrical and the local elongation rates within the liquid
bridge are not homogeneous. To measure the local
differences of the elongation rates within the liquid
bridge, flow visualization during stretching experiments
with large Newtonian and viscoelastic liquids have been
carried out in a Plateau tank.

PURE ELONGATIONAL FLOW

A pure axissymmetric elongational flow (Bird et
al.,1977) is a shear free flow with a linear velocity
distribution (cylindrical coordinates)

V= éz, Vp= -¢1/2. (1)
The non-zero components of the resulting rate-of-strain-
tensor are

Ygz= 20Vgz/0z= 2¢, yrr= 20v{/dr= -&. @
gg is defined as the normal

As the elongational viscosity
by the elongation rate é

stress difference 7zz-rrr devid
(€)

For pure

1e= Tzz-Trrlé,
the difference 9zz-yrr is of interest.
elongational flow z-7rr equals 3é.

EXPERIMENTAL SETUP

In a Plateau tank the test fluid is placed between
two circular plane disks and is surrouded by another fluid
of equal density which is immiscible with the test fluid.
As gravity is balanced by bouyancy forces the initial
liquid bridge shape is cylindrical (initial bridge diameter
and length are 2Ry= Ly= 50 mm). The liquid bridge is
stretched by moving the upper disk upwards with a
constant velocity u= 8 mm/s while the lower disk
remains at rest. Small particles are added to the liquid
and the liquid bridge is illuminated by a light sheet
parallel to the bridge axis. Series of photographs with
exposure times of 0.5 s are taken to visualize the velocity
field.

LIQUIDS

In order to show the different influences of the
forces acting in the liquid bridge three Newtonian and
three viscoelastic liquids were selected as bridge liquids.
The Newtonian liquids were water and two silicon fluids
(Dow Corning, 200 Fluid) designated S160 and S3000.
As viscoelastic test liquids polyacrylamide copolymer
(Stockhausen, PRAESTOL 2500) solutions in double-
distilled water of weight concentrations 0.01, 0.3 and
0.9% (designated PAA 0.01%, PAA 0.3% and PAA



WATER

5160

S3000

Fig. 1: Photos of stretched liquid bridges (L= 90 mm)
Newtonian liquids
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PAA 0.01%

PAA 0.3%

PAA 0.9%

Fig. 1: Photos of stretched liquid bridges (L= 90 mm)
viscoelastic liquids



:0.9%) were used. The PAA solutions show normal
stresses and an elongational viscosity that increases with
the elongation rate and po;lymer concentration (Kroger et
al., 1992; Ferguson et al., 1990; Jones and Walters,
1989). For all test fluids the (zero) shear viscosities ng
and the Capillary numbers

Ca=nuR;/(L0) )
are shown in Table I (calculated for an ideﬂ cylinder of
length L= 2 L and radius Re= Ry (Lo/L) 2, with L=
50 mm, Ry= 25 mm, interface tension = 20 mN/m
and disk velocity u= 8 mm/s)

Table I: (zero) shear viscosity and Ca of test liquids

liquid Mg /Ca

[mPa.s] [-]1
water 1 10000
PAA 0.01% 4 4000
S160/PAA 0.3% 160 90
S300/PAA 0.9% 3000 5
EVALUATION PROCEDURE

For each photograph (some samples for
L =90mm are shown in Fig. 1) the liquid bridge conto%
was approximated by a polynomial function R(z) of 8
order. This function R(z) was used for the optical
correction of the light refraction at the bridge surface
(see below) and to determine the minimum radius of each
bridge shape. In Fig. 2 the minimum radius is ploted
versus the bridge length for all examined liquids.

The particle path lines visible on the photos were
assumed to represent the local velocities. The corre-
sponding velocity vectors have been digitalized from
each photo. After the optical refraction of the Plateau
tank wall and the liquid bridge surface was corrected, the
velocity field was approximated by functions of the form
vi(r,2z) and v,(r,z) for the velocity components. This ap-
proximations have been calculated with Chebyshev poly-
nomials using a least square fit to the measured vectors
with the following boundary conditions. The liquid vel-
ocities at the disks equal the disk velocities,
vr(r=0,2)=0, v; and v, are axissymmetric. In general
the orders of the Chebyshev polynomials were 3 for vy in
z direction, 4 for vz in r and vy In z, and 5 for vy in r di-
rection. The average difference between the approxima-
tion and the measured values of v and v, was calculated
and if the difference was larger than hal% of the measur-
ing error the degrees were increased accordingly. From
the velocity approximations vi(r,z) and v,(r,z) the veloc-
ity and its derivatives with respect to r and z can be de-
termined for each position within the liquid bridge. From

that
(Yzz-¥ro)(r,2) = 2 (9v4/9z-0v¢/0r) ©)
can be calculated.
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Fig. 2: minimum radius versus bridge length

In order to reduce the large amount of data the
following average values have been calculated. The
weighted average in the cross section z=zp was
calculated as

R(zo)
[ ru(r,z0) dr
0
{UZ} (2’0) = R(z0) (6)
J rdr

[1]

so that {v}(), {vi}@ and {izz-rr}(®) can be
c{:ali:uiated for ee{lct; photo for Oth <L. The notanon;
i and {..}yjp indicate the maximum an
muuTna!fm values wlg&{lln the region 0<z<L. For all
liquids plots of {vi}max versus the bridge length are
shown in Fig. 3 and the values of {¥zz-Vrr}max and
{¥2z-¥rr} min are shown in Fig. 4.

In Fig. 1 it can be observed that there are cases in
which the liquid flows towards both disks (PAA 0.01%),
indicating that {vz}max > u and {vz}min < 0. The mean
axial velocity relative to the disks was calculated as

{vz}re1= ({(vz}max-u-{vz}min)/2 Q)]
for each photo and is shown in Fig. 3 versus the bridge

length for all liquids. The overall average <<zz-Yrr>
was calculated from

L
. . 1 . .
=i > =7 [Ha-id @ g
1]

and is shown in Fig. 4 versus the bridge length for all
liquids.
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Fig. 3: mean velocity relative to the disks and maximun
radial velocity versus bridge length



RESULTS

. . From Fig. 2 it can be seen, that for all liquids the
minimum radius of the liquid bridge, i.e. the most
narrow part of the bridge, reduces as the bridge is
stretched. While the low viscosity liquid bridges (water
and PAA 0.01%) reduce their radius very fast, the high
viscosity liquids reduce their radius slower and remain
more cylindrical shaped (compare photos in Fig. 1).
Newtonian liquid bridges contract faster than viscoelastic
bridges which tend to form more cylindrical shapes.

... The principal flow field that was observed for all
liquids is best illustrated by the photo of the PAA 0.01%
flow field in Fig. 1. In the minimum radius region the
liquid flows inward towards the bridge axis, and forms a
stagnation point. From here the liquid flows towards both
disks. If the axial velocity towards the disk is higher than
the disk velocity, which is obvious in the PAA 0.01%
case, another stagnation point is formed at each disk and
the liquid starts flowing outward in front of the disks
(vortex kind flow). In Fig. 3 for each photo the
maximum axial velocities relative to the disks and the
maximum radial velocities away from the bridge axis are
ploted versus the bridge length for all liquids, The vortex
character can be detected clearly for the low viscosity
g%xégls, but not for the high viscous S3000 and PAA

_ From the described flow field it is obvious that in
the minimum radius region the highest elongation rates
occur and that closer to the disks the local elongation rate
reduces and can even become negative. In Fig. 4 the
overall average <fjzz-yrr> and the maximum {yg,-
Yrrimax (minimum radius region) and the minimum
value 1¥zFrrhmin Gn front of the disks) are ploted for
all liquids versus the bridge length. While the average
<9Yzz-¥rr> is lower than the theoretical value 3¢ the
maximum values of ;- are significantly higher than
3é. The differences between {yzz-¥rr}max and {yzz-
Yrr)min indicate the non homogeneous distribution of the
local elongation rates within the liquid bridge. This
ﬂlffg:éence increases with a decreasing viscosity of the

quid.

CONCLUSIONS

From the stretching experiments of large
Newtonian and viscoelastic liquid bridges the following
description of the occuring flow can be given. The liquid
bridge is held between two disks by surface tension and
wall adhesion. If the bridge is stretched surface tension
tries to deform the bridge contour to achieve minimum
surface area, while flow resistance due elongational and
shear viscosity act against it. A large bridge contraction
can be observed for low viscosity liquids in the middle of
the bridge, while for high viscous liquids, due to viscous
damping, the contraction takes more time and the bridge
is more cylindrical like.

In the contraction region a stagnation point can be
observed as the liquid flows radially inwards and from
here along the axis towards both disks. For low Capillary
numbers the flow towards the disks can achieve axial
velocities that are larger than the disk velocities, so that a
vortex is formed. The liquid now flows radially outward
in front of the disks.

It was measured that the local elongation rates in
the contraction area are the highest and that in front of
the disks negative elongation rates occur. The maximum
elongation rates in the middle of the bridge are higher
than those calculated from the disk velocity assuming an
ideal cylinder. With decreasing Capillary numbers the
local elongation rate distribution becomes more non-
homogenious.
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