11th Australasian Fluid Mechanics Conference
University of Tasmania, Hobart, Australia
14-18 December 1992

9A-4

THE EFFECT OF SWIRL ON THE STABILITY OF A COMPRESSIBLE AXISYMMETRIC JET

Mehdi R. KHORRAMI

High Technology Corporation, M/S 163
NASA Langley Research Center
Hampton VA 23681-0001, USA

ABSTRACT

The effect of swirl on the linear stability of an
axisymmetric compressible jet is studied. It is
found that the growth rates of the linearly unstable
modes increase substantially with the addition of
rotation to the jet. More important, with the intro-
duction of swirl, the stabilizing effect of higher
Mach numbers is greatly diminished.

INTRODUCTION

The prospect of sustained hypersonic flight
has focused attentions on the required propulsion
system. One of the critical technology involved is
the design of the combustion chamber where fuel
and air must be mixed very efficiently. Owing to
the high speeds involved, fast mixing must be
accomplished in the free shear layers that are
formed during the injection process. However, it is
well known that the growth rate of a shear layer is
reduced significantly as Mach number increases
(Birch and Eggers 1972, Chinzei et al. 1986). Thus,
the goal of much current supersonic combustion
research is to enhance fuel/air mixing by altering
shear layer spreading rates in someway.
common strategy is to employ streamwise vortices
or swirl.

Recent experiments by Taghavi et al. (1989)
indicate that the superposition of swirl on an
axisymmetric jet at low Mach number tends to
increase the jet spreading rate and hence may
provide a means to enhance mixing.
Unfortunately no data are currently available on
the effect of swirl on compressible jets. Therefore
as a model flow, the stability of a compressible
swirling jet is considered. The analysis reported
here is restricted to small rates of swirl relative to
the jet velocity, which is appropriate for supersonic
combustion chambers.

FORMULATION

The natural coordinates for rotating flows are
cylindrical-polar (r,8,z). In this coordinate system
U;,Ug:0,, B, T, and p represent the three compo-
nents of velocity, pressure, temperature and
density, respectively. The flow variables are
decomposed into a mean part and infinitesimally
small perturbations. Assuming three-
dimensional wave forms for the disturbances, the
flow variables then are written
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where o and n are the axial and azimuthal
wavenumbers respectively and o = @, + iw; is the
complex angular frequency. The first bracket on
the right-hand side of Eq. (1) represents the mean
quantities and the variables F, G, H, P, T' and & are
the eigenfunction components. Substituting Eq. (1)
into the Navier-Stokes equations and neglecting
higher order terms in the perturbations, the
linearized governing equations are obtained. The
general form of the linearized equations for paral-
Iel and variable properties compressible flows are
given by Khorrami (1991) and due to space limita-
tions are omitted here. It is noted that the equation
of state for an ideal gas is used and perturbations
in the flow properties are related to temperature
perturbations via the assumed functional form of
dynamic viscosity, 4, and thermal conductivity, k.

The governing equations, presented in a labo-
ratory frame of reference, are normalized with
respect to the jet centerline values and a character-
istic length scale, ry, to be defined later. Moreover,
Re, Pr and M represent flow Reynolds, Prandtl,
and Mach numbers respectively.

The far-field boundary conditions imposed on
the disturbances are

as r—oee  F(eo)=Gleo) = H(eo) =T(e0)=0. (2)
For single valued and smooth solutions, the bound-
ary conditions required on the centerline, r = 0,
are:

if n=0, F(0)=G(0)=0
‘fi—ff(m:%m):o

it n=tl, F(0)+iG(0)=0
%{0):0 ”
HO0)=T(0)=0

if Inl> 1, F(0)=G(0)=0

H(0)=T(0)=0.




The governing equations plus Eqgs. (2)-(3) con-
stitute a generalized eigenvalue problem for which
temporal formulation is arranged in the form

Ay= By . @)

The coefficient matrices A and B, are discretized
employing a staggered Chebyshev spectral colloca-
tion technique (Khorrami, 1991, Macaraeg et al.,
1988). The resulting matrices are of the O(5N )
where NN is the number of Chebyshev polynomials
employed. The eigenvector ¥ is represented as

y={F,G,H,P,T}" . )

The far-field boundary conditions are enforced at a
radial position 50 < rpax < 100. Preliminary studies
revealed that for a rax= 50, the eigenvalues are
virtually independent of the truncated domain.
The complex frequency @ is obtained using the
standard IMSL QZ routine. The results presented
in this paper are computed using 80 < N < 110 to
ensure five or six significant figure accuracy.

BASE FLOW FIELD

The similarity solution for an axisymmetric
jet with weak swirl obtained by Gértler (1954) is
utilized to represent the mean flow. For large
Reynolds numbers, Girtler's zeroth-order solution
of a swirling jet can be represented as

q r

~0.32475 [ +rz)2 ’ o
W:;z , (6b)
(1+r2)

where g is the swirl ratio and the flow is assumed
to be locally parallel which results in

U=0. (N

The length scale ny = ztangy is a measure of jet
spread and ¢y ~tan 2/K is the spreading angle
for K large (4)D small). K is propor or;al to, the
streamwise momentum flux 27

where star demotes dimensional qanItItles The
normalizing centerline velocity is given by

2
Wy =i | )
4

and the flow Reynolds number is then Wy / v = 4K

for large K where v is the kinematic viscosity.
For a weakly rotating jet (¢ < 0.1), the mean
radial pressure gradient can be neglected. Hence

oI
=0 . 9
o &

For such weak swirl, temperature is
assumed to be function of axial velocity only.
Taking Pr = 1, the radial profile of temperature is
obtained via Crocco's relation. The mean tempera-
ture profile is given by

n(r)=ﬁ+(1wﬁ)W+(y71)M2M, (10)

where yis the ratio of specific heats and the den-
sity is obtained via

p(r)=% . 1D

The constant, f, represents the ratio 7.,/ 1y with
1o being the centerline temperature. fis ta(i:en to
be one since computations showed the results to be
alénost independent of this parameter for 0.7 < f <
1.3

DISCUSSION

Before presenting the results, it is noted that
for the current study the flow is assumed to have
constant properties. Furthermore, the Mach
number is taken to be in the range 0 <M < 1.4 while
q is confined to < 0.1. Since the jet instabilities are
inviscid in nature, it was found that for Re > 900
the growth rate of disturbances approach their
inviscid values very rapidly. Therefore, the
computatlons discussed in this paper are for Re =
103,

Previous research by Batchelor and Gill (1962)
and Lessen and Singh (1973) showed that a fully-
developed axisymmetric non-rotating jet is only
unstable to three-dimensional disturbances having
azimuthal wave numbers n=+1. It was found
early on that the addition of swirl stabilizes the
disturbances with positive azimuthal wave
number. However, the situation for n < 0 modes
proved to be quite different. Hence, we focus our
attention on this particular class of perturbations.

Figure 1 represents the effect of increasing
Mach number on the growth rate of n = -1 modes
for a non-rotating jet (g = 0). The significant damp-
ing effect of higher Mach numbers is apparent.
This particular figure is used as a reference point
to compare the rotating jet results.
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Fig. 1. Effect of increasing Mach number on the
growth of n = -1 dlsturbances for a non-rotating jet
(g = 0) with Re = 10",

Figure 2 displays the effect of adding 4% swirl
(g = 0.04) on the n = -1 disturbances. The growth
rate curves show a three to six-fold increase over
the no-swirl results shown in Figure 1. At the
same time, there is a broadening of the region of
instability in the axial wave number space (). The
general damping trend of higher M is also present
for a swirling jet, while the effect on the axial
phase speed of disturbances, w, /&, is negligible.
However, it is clear that rotation tends to decrease
the percentage of drop in the maximum value of o,
due to the increase in Mach number. Figure 3
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displays the effect of increasing swirl on the n =-1
mode for oo = 0.8, M = 0.8, and Re = 103. From this
figure as an example, it was determined that with
the addition of only 4% swirl, the growth rate of the
n = -1 disturbances is increased by more than
300%. Also note the presence of a second mode of
instability as ¢ is increased beyond 0.07. The
computations were stopped at g = 0.09 since, for
larger swirl, the validity of the mean flow field
employed becomes increasingly questionable. The
effect of Mach number on this mode for a = 0.8, ¢ =
0.04, and Re = 103 is presented in Figure 4. As
mentioned earlier, for moderate values of M, the
reduction in the growth rate is slight.
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Fig. 2. Effect of increasing Mach number on the
angular frequency of the n = -1 disturbances for a

swirling jet (¢ = 0.04) with Re = 10°, —a,, -
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Fig. 3. Variation of angular frequency vs swirl

ratio for n = -1 perturbations with @ = 0.8, M = 0.8,

and Re = 10°. —uw,,
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Fig. 4. Frequency vs Mach number for n = -1

perturbations with & = 0.8, ¢ = 0.04, and M = 0.8.
—— Wy = ;.

The variation of complex frequency, o, with a
for n = -2 modes is presented in Figure 5. The com-
putations were performed for ¢ = 0.06, M = 0.8, and
Re = 103. Recall that a fully-developed non-swirling
axisymmetric jet is stable to such disturbances or
any other modes with higher azimuthal wave
numbers. Figure 5 depicts an instability with
comparable growth rate to the n = -1 modes (Figure
2). Similarly, there are higher modes present. The
effect of Mach number on n = -2 modes is shown in
Figure 6 for a = 0.5, ¢ = 0.04, and Re = 103. For the
range of M considered, the stabilizing effect due to
compressibility is almost non-existent for this dis-
turbance.
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Fig. 5. Variation of the frequency vs axial

wavenumber for n = -2 disturbances with g = 0.06,
M =0.8,and Re = 10°. —a,, -—-- .
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Fig. 6. Frequency vs Mach number for n = -2
disturbances with e = 0.5, ¢ = 0.04, and Re = 10%.

Further computations revealed that n = -3 modes
behave similarly to the n = -2 disturbances and are
therefore not reported here. The disappearance of
Mach number effect for n < -1 modes is a puzzling
behavior which is contrary to the trends obtained
for disturbances of two-dimensional as well as
axisymmetric free shear layers. While addition of
swirl does show promise for mixing enhancement,
more extensive studies are needed to fully
understand the effect of rotation on the stability
characteristics of a compressible shear layer.

CONCLUSIONS

The effect of rotation on the stability charac-
teristics of a compressible axisymmetric jet was
considered. Based on linear analysis, the growth
rate of n = -1 disturbances 1s significantly
increased with the addition of swirl. Furthermore,
disturbances with higher negative azimuthal wave

numbers than n = -1 become highly unstable. Such
perturbations are stable for a fully-developed non-
swirling jet. More important, the stabilizing
influence of higher Mach numbers is greatly
diminished with the introduction of swirl to the jet.
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