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ABSTRACT

In 1986 a canoeist using a new style of paddle broke a
world race record by a substantial margin, and this new 'wing'
blade has subsequently largely replaced the older 'drag' blade
in competitive racing. This paper examines propulsion by
paddling from first principles in an attempt to explain the
success of the wing paddle. This is done using an analytical
method which gives an explicit expression for propulsive
efficiency to be derived in terms of the paddle dimensions,
stroke time and hull drag area. An experimental technique for
optimising blade shape and stroke angle is also described, and
some typical results given.

Notation for subscripts ; H =hull, B = blade, V = vortex

1 INTRODUCTION

In most forms of paddling propulsion the thrust is
generated by the drag on a paddle moving in a direction
opposite to the hull motion - this is true of paddle-steamers,
ducks and the conventional means of canoe and kayak
propulsion, for example. In recent years racing canoeists have
evolved a means of propulsion more akin to screw propellers
and bird wings, where the thrust is generated primarily by
paddle lift rather than paddle drag. This requires not only a
paddle of different shape but also a different stroke motion in
which the paddle is given a significant velocity normal to the
direction of hull travel.

Paddle propulsion generates highly unsteady fluid
motion in which both momentum and kinetic energy are
transferred to the water by the paddle. The equations for these
quantities are easily written in terms of the blade forces and
velocity, but the expressions are extremely difficult to evaluate
from first principles. This is overcome here in two ways.
One is by idealising the fluid motion to suppose that the only
effect of the paddle is to generate a vortex ring - the necessary
properties of the fluid motion can then derived from the
impulse required to generate the vortex. The blade forces and
resulting fluid motion may also be studied empirically, and
here the challenge is to formulate the problem in such a way
that the results of tank tests on the paddles can be interpreted in
a meaningful way.

The objective of this work is to explain the gains in
speed which can be expected from improvements in the
various aspects of canoe paddle design.

Table I: Data for the K1 canoe

max length , L(m) 5.2 total drag, Dy (N) 87
displacement (m?)  0.093  drag area, Ay (m?) 0.0078
speed, Vi (m/s) 471 stroke time, T (s) 0.55
blade area, Ag (m2) 0.07 immersion time, A(s)  0.35
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2 PROPULSIVE EFFICIENCY & BLADE FORCES

2.1 Hull forces

We begin with a general outline of canoes and their
typical speeds. Table 1 lists typical data for the K1 canoe
(the numeral denoting a single paddler), where the speed
shown is that for the 1000m final of the Los Angeles
Olympics. Other data are taken from Toro (1986). The total
drag on the canoe is made up of friction and wave drag
components on the hull, plus an aerodynamic component from
the deck and canoeist. The friction and form drags can be
reliably estimated using established procedures. Wave drag is
best found from towing-tank data, enabling the effects of
slenderness and Froude number to be found - the rather
meagre evidence available suggests that the wave drag for a
K1 is about one quarter of the total. The most convenient way
of expressing the total hull drag Dy in terms of its speed Vy is
then by means of its drag area Ay, which is defined by the
expression

Di = 7p Vi An M
The values of the drag area given in Table 1 are derived from
the analysis in Jackson (1992) ; this area may be regarded as
fixed for small changes in speed. Measurements have shown
that the hull speed fluctuation is about 5% of the mean, so it is
both accurate and convenient to assume that both the hull
speed and its total drag force are steady.

22 Bla and efficienc
The hull drag must be balanced by the mean thrust from

the paddles. This can be expressed as follows in terms of the

(highly unsteady ) lift and drag forces defined in Figure 1 ;

A
Dy = % J(DCOSB + Lsin®) dt )
0 5

where A is the time for which the blade is immersed and T is

the total stroke time.
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Figure 1. Forces, velocities and angles



Note that the blade velocity has been shown making an angle 8
to the hull axis, for reasons which will be explained later. The
total rate of working by the paddler is the inner product of the
blade force and its velocity relative to the paddler, which taken

over one cycle reduces to

A
P = DygVy +:}|— |DVp dt 3
0

The first term is obviously the rate of work required to
overcome hull drag; it is the "useful” component of the total
propulsive power. The integral in the second term is the work
done by the blade moving at speed Vg relative to the water,
and as this energy is not recovered there is (as usual) an
inherent inefficiency in the generation of the thrust. This is

measured by a propulsive efficiency 1 such that

P = DVH/M 4
Efficient propulsion therefore clearly requires the product of
blade drag force and velocity to be small, but this must be
achieved subject to equation (2).

Evaluation of the efficiency from (2) and (3) requires a
detailed knowledge of the unsteady blade forces. This
approach is discussed later, but first we develop a simpler
method which considers instead the disturbance left in the
water.

3 VORTEX RINGS AND THE WING BLADE

Both laboratory and field observations show that the
primary structure in the wake of a blade is a strong U-shaped
vortex terminating at each end on the water surface. As both
the blade work and impulse during a stroke must result in the
appearance of equal energy and impulse in the water, the blade
efficiency can be estimated if these quantities can be found for
the fluid motion associated with this vortex. This requires
knowledge of both the shape of the vortex core and the
distribution of vorticity within it, and these may be obtained
from the following simple model which approximates the
blade wake by a semicircular vortex terminating at the water
surface.

The integrated blade force in (2) is just the impulse of
the blade force on the water, and must equal the impulse of the
vortex. Similarly the integrated blade work in (3) must equate
to the energy of the fluid motion in the blade wake. The
required properties of this motion may be found from those of
a ring vortex derived by Lamb (1945) - the impulse and energy
of half a ring vortex having a radius R with a small core of

radius r and circulation K are as follows ;
(k-1.75)

I—%pKRZ, E R,

where k = In ( 8R/r). The vortex circulation K may now be
found in terms of parameters already defined by using (1) and

(2). Using the resulting expression for the energy E in (3)
and (4) leads to the expression
L,k AuTvg -
n cos¢p AV VAy

where Ay is the area enclosed by the vortex, ¢ is its direction
of motion relative to the hull track, and k' =0.10 ( 0.33 +
In(R/r).

This expression is of immediate use in demonstrating the
important parameters of the blade and stroke. For fixed hull
parameters AH and VH the effort is seen to be determined
solely by the paddle area, the stroke period, the inclination of
the ring vortex to the hull track and the intensity of the vortex
core. For least effort the aim should clearly be to generate
diffuse vortices travelling parallel to the hull as frequently as
possible. In the limit this process must form a continuous
vortex tube of large area and small wake velocity - exactly as

_required by the classical theory of fluid propulsion.

1198

The ratio TVH/R is that of the distance between
successive rings to the radius of the rings. Itis typically large
(about 10), and so there is no need to consider the interaction
between the tings (at least for the K1 canoe) which Rayner
(1979 ) found to be necessary in his study of hovering flight.
It is evidently advantageous to form a vortex with a more
diffuse core (larger r ), although this effect is weak ;
Saffman's (1970) analysis may be used to extend these results
to account explicitly for the distribution of vorticity in the

vortex core. ‘
| / |

(b) Wing blade

(a) Drag blade

Figure 2. Planform and blade sections

The parameter having most influence on the efficiency is
obviously the vortex area Ay, but in this regard we find that
practitioners of the sport have already anticipated the theory (as
so often). The conventional stroke uses a fairly symmetrical
'drag' blade, as illustrated in Figure 2a, which moves along

the hull track (so that both @ and ¢ are zero) as in Figure 3a.
The flow separates all around the edge of the leading face of
the blade, and the resulting vortex sheet rolls up into a vortex
of overall dimensions similar to those of the blade planform.
In order to find the resulting efficiency from (5) we must first
estimate the area bounded by this vortex and the radius of its
core. This can be done using Taylor's (1953) solution for the
‘'dissolving disc' problem, where a disc of radius Rp given an
impulsive start to speed Vg is shown to form a circular ring
vortex of radius R = 0.82Rp travelling at speed Vy =

0.44Vg, and with its vorticity concentrated into a core of
radius r = 0.18R. It is then necessary to suppose only that a
blade is equivalent to a semi-circular disc of the same area,
when (5) becomes ;

1_ ., 036 Ay Ty

— +
n cosp AB VAp

Numerical values for 1 are now easily found using values

given in Table 1, giving 1= 0.72 for the K1 for example.

However around 1986 a novel 'wing' blade emerged
and quickly became accepted as a superior design. The blade
is highly asymmetric, as shown in Figure 2b, and in use is
given a significant velocity normal to the track of the hull as
sketched in Figure 3h. The intention is clearly to generate the
thrust using blade lift, as well as drag. The blade therefore
sheds a starting vortex and a trailing vortex which form a
continuous loop , as indicated in Figure 3b the resulting vortex
area being much larger than before. If the enclosed area of this
vortex is, say, twice the previous area then the efficiency rises
to 88% - the wing blade is therefore inherently much more
efficient.

This analysis presumes that the vortex formed by the
wing paddle lies in a plane normal to the track of the hull. This
does not mean that the blade should move in this plane,
however, as each part of the shed vortex begins its induced
motion as soon as it is formed. The blade must therefore have a
equal (backwards) component of velocity in order to keep the

(6)
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Figure 3. Stroke style for the drag and wing blades

whole vortex in the normal plane - presumably the quicker the
vortex is formed (the faster the blade stroke) the less this
rearward component need be. It is also presupposed that the
vortex wake is the only disturbance in the blade wake,
whereas in practice there must also be viscous wakes which
will further degrade the efficiency. (The Reynolds number of

the blades is around 5 x 105),

4 BLADE FORCE MEASUREMENTS

4.1 Fixed stroke angle

The theory presented above is helpful in estimating the
propulsive efficiency and the relative importance of the various
parameters which affect it, but it offers little guidance

regarding the optimum blade shape or stroke angle 6. This is
best sought by finding the efficiency by direct measurement of
the forces in (1) and (2) for blades of differing shape. Ideally
this should be done using field measurements, but as this is
not easily accomplished we seek to rewrite the equations
leading to (3) in a way which shows how laboratory
measurements might be used. In order to do this is it
necessary to add the restriction that the blade path through the

water is a straight line (so that 8 is a constant during a stroke).
If then the instantanteous blade forces for a particular blade
undergoing a particular stroke have been measured, the blade

work can be found (and is then fixed). By altering the angle 0
at which the same stroke is made relative to the hull different
values of hull drag, and therefore hull speed, will be obtained
from (2). We can therefore optimise the propulsion in the
sense of finding the highest speed for a particular blade
making a stroke at a particular angle of attack .. It is readily
shown that the best strategy is to orient the stroke such that the
resultant of the blade mean drag and lift is directed in the
direction of motion of the hull, when

I
tan Bopt = I-)T;, N
where
j A 1 £
Eav =E(j)'1_,3dt, Dav :ZJ Dgdt.

The corresponding hull drag may then be determined from
equation (2), with (1) giving the corresponding hull speed.
Finally, equations (3) and (4) shows that the overall
propulsive efficiency may then be written in terms of an

. efficiency factor & ;
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Lot+ g, (8a)
n
where
A A
= '\/p—zﬁ i [ DpVadt
K= KK%’ and £ = U (8b)
(Dav2+Lav2)

The significance of & is that it is a dimensionless number
which is independent of blade size (if blade forces are
proportional to blade area) and therefore should be a function
only of the blade shape and of the time history of the stroke
speed Vp, The influence of the hull and blade area appear only

via the factor x. If £ can be determined for a particular blade at
any angle of attack we now have a method of choosing the

best angle of attack, the corresponding best stroke angle 8opy
for that blade, and the resulting hull speed and blade
efficiency. The performance of blades of different shape may
thus be compared.

Note that if the flow should reach a quasi-steady state in
which both lift and drag are proportional to Vg2, the definition
of £ then shows that its value becomes independent of the

stroke duration A.

4.2 Experimental measurement of efficiency

In order to find & experimentally a laboratory apparatus
was constructed for simultaneous measurement of the blade
forces and velocity. In practice the blade tip traces out a U-
shape, with the rake of the blade varying considerably during
the stroke. However here the stroke used is a simple
translation, with the blade submerged at a fixed depth.

The principles of the equipment are illustrated in Figure
4. The blade is fixed to a carriage by a cantilever which is
straingauged to measure the blade forces in two orthogonal
directions, and in such a way that the results are independent
of the point of application of the forces. The carriage is
propelled along a tank by a large pneumatic cylinder, with a
rotating wheel generating pulses for the determination of the
carriage velocity. Actuating the piston then swept the blade
over a distance of 1.0 m in approximately 0.8 seconds, during
which the three variables of interest Lg,Dp,Vp were recorded
at 100Hz. Inertial effects were shown to be negligible.
Further details of the apparatus may be found in the report by
Locke (1991).
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Figure 4. Sketch of the towing-tank apparatus

Although several blades were tested only the two shown
in Figure 3 are discussed here. Figure 5 shows the measured
drag of the drag blade for a run at 90° angle of artack. This
shows a characteristic peak at the start of the motion which is
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Figure 5. Force measurements on the wing blade

due to the inertia of the surrounding mass of water which must
be set in motion with the blade. Since there is no mean lift, the

best stroke angle for this blade and stroke would be 8 = 0°.

The figure also shows the lift and drag forces on the
wing blade for a run at 20° angle of attack. Both show less
pronounced peaks at the start of the motion, and as expected
the lift force builds rather more slowly than the drag. After
some time the magnitude of the lift force becomes comparable
with the drag on the drag blade, and would therefore produce a
similar propulsive force to the drag blade if the wing were 1o
move normal to the hull wack. Because the drag on this blade
is much reduced, the mechanical effort required to produce this
thrust with the wing blade is correspondingly much less than
that for the drag blade.

In calculating & from (8b) the most suitable choice for
the upper limit A is not obvious. In practice the integrals reach
a natural limit when the blade leaves the water, but this was
not the case in the laboratory simulation. Therefore here we
calculate & up to every time step A, so producing a plot of &

versus distance travelled for each angle of attack, o.

Figure 6 shows the results for the wing blade for a
range of angles of attack . These results again demonstrate the
advantage of generating thrust by lift rather than drag, as for

any stroke length the best efficiency (least £) is obtained using

an angle of attack of 20 - 309, They also show that the best
efficiency is obtained in the early part of the stroke, although
in order to take advantage of this the stroke length would
rather impractically have to be less than 0.2m.
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Figure 6. Efficiency factor for the wing blade at various o
(oo=00,0; 100,®; 3000 ; 500, 4; 900, ¢ )

From the values given earlier the parameter x has the
value 0.4 for a K1 canoe, and Figure 6 suggests that a typical

€ for the wing blade would be 0.22. Equation (8a) then gives

the propulsive efficiency as 1 = 0.92, in good agreement with
the earlier estimate. The corresponding best (constant) stroke

angle 6 required for a = 20° may also be found from the blade
measurements using equation (7). The results indicate that the
best stroke angle to use with this blade is approximately 65°
to the hull (although the apparent angle for the canoeist is of
course smaller ). At the large angles of attack used by the drag

blade it is evident that & will be higher, and so less efficient ;
with £ = 0.4 for a 90° angle we get 1 = 0.86

5 PERFORMANCE OF THE K1 CANOE

As the two methods above give quite good agreement
for the efficiency of the two different types of blade we may
now estimate the power delivered by each paddler, and the
speed increase to be expected from the use of the wing blade.
From the data of Table 1, the power required to overcome hull
resistance is 410W. Adopting a figure of 0.9 for the efficiency
of the wing blade, the rotal propulsive power must be 455W
Although the authors are not aware of direct measurements of
the power output for canoeing, these are available for other
activities like cycling and rowing. Over a 4-minute period the
average power output for both these sports is approximately
500W, so our estimate for the K1 is certainly reasonable.
When this approach is used for K2 and K4 canoes (having 2
and 4 canoists) very similar estimates are obtained for the
specific power output (there is no space for these results here),
and this adds to further to confidence in our approach.

Finally, if we suppose that this specific power output is
now fixed, the ratio of speeds achieved using the two blades is
proportional to the cube root of the ratio of their efficiencies.
Adopting a value of 0.8 for the drag blade efficiency then
gives a speed advantage to the wing blade of 4%. In practice
this advantage must be reduced by other effects neglected here,
like viscous and free-surface effects and spray generation,
which will degrade the performance of both kinds of blade.

6 CONCLUSIONS

The efficiency of paddle propulsion has been determined
by experimental measurements of paddle forces, and by
analysis of the disturbance left in the water by the paddle
stroke. Both methods show good agreement, and demonstrate
the expected superior performance of the wing paddle. The
origin of the advantage due to the wing blade has been
explained, and a quantitative formula for efficiency derived in
terms of the parameters describing the blade stroke. Analysis
of the vortex motion generated by the paddle suggests that
increasing the stroke rate and vortex area should both produce
an improvement in performance.
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