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ABSTRACT

Point-vortex methods for modelling 2-D fluid
flows commonly develop high-wavenumber instabilities
which result in irregular vortex motion. Various schemes
have been introduced to regularise the point-vortex
equations, such as spectral filtering (Krasny, 1986a),
and the use of ‘vortex-blob’ methods (e.g. Chorin and
Bernard, 1973, Krasny, 1986b). These schemes are,
however, somewhat ad hoc, and motivated simply by
the need to suppress instabilities.

Here, a vortex method which models the effects
of viscosity is used to calculate the evolution of a cylin-
der of fluid released in a uniform flow, a problem ex-
amined by Rottman et al. (1987). The solution re-
mains smooth over the calculation interval for mod-
erate Reynolds number (Re 1000). The results of
the calculation are contrasted with results gained using
fle = 10000 (approaching the inviscid solution), with
and without the spectral filtering technique introduced
by Irasny, both of which develop instabilities over the
same caleulation time. Particular emphasis is placed on
the differences in the evolution of the discrete spectra of
the interfaces.

1. INTRODUCTION

Point-vortex methods are most useful when a 2-D
flow problem involves concentrated regions of vorticity
(such as a vortex sheet) embedded in large regions of
irrotional fluid. The entire problem may then be solved
by caleulating the evolution of the vorticity distribu-
tion. Problems which can be modelled using a vortex
sheet are those with a tangential velocity discontinmu-
ity across an interface separating two fluids. If the flu-
ids are unbounded, and have the same deusity, a dis-
cretisation of the vortex sheet using N point vortices re-
duces the flow problem to the solution of 2N first arder
ODE’s. If the fluids have different (constant) densities,
Bernoulli’s equation must also be solved to obtain the
baroclinic evolution of the vortex-sheet strength (Baker
et al. 1082).

The evolution of an inviscid vortex sheet is typ-
ically governed by a dispersion relation where normal
mode growth rates increase without bound for inereas-
ing wavenumber. . The discrete dispersion relation for
such a sheet modelled using point vortices shows simi-
lar hehavieur, with the maximum normal mode growth
rate being that for the highest wavenumber. Sinee com-
puters use only finite precision in calculations, any rep-
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resentation of an interface will have finite amplitudes at
all wavenumbers of its spectrum (this amplitude being
greater than or equal to the machine ‘noise’ level) and
these amplitudes will grow according to the discrete dis-
persion relation, quickly leading to irregular vortex mo-
tion. This effect was investigated by Krasny (1986a),
where the evolution of a periodic vortex sheet was used
to model Kelvin-Helmholtz instability. A spectral filter-
ing scheme where all spectral amplitudes below a fixed
noise level were set to zero at each time step was intro-
duced to overcome the problem. This filtering results
in smoother solutions up to the time when all spectral
amplitudes have grown past the noise level, after which
the filtering has no effect and irregular vortex motion
SOOI OCCUTS.

Vortex-blob schemes, where the vortex sheet is
represented by finite size vortex blobs (with a given
vorticity distribution), rather than point vortices, have
been used by several researchers (e.g. Chorin and
Bernard, 1973, Krasny, 1986b, Rottman et al. 1987).
The use of finite size vortex blobs has the effect of
damping the growth of high-wavenumber amplitudes in
the discrete dispersion relation for the evolution equa-
tions, and provides significant smoothing of solutions
for large times. The use of arbitrary size vortex blobs
is, however, motivated simply by the need to control
high-wavenumber instability.

If viscosity is included in the problem formula-
tion, then the discretisation of the vorticity distribution
must satisfy the viscous vorticity transport equation.
This can be achieved if vortex blobs which individually
satisfy the equation are used to discretise the given dis-
tribution (see the review by Leonard, 1980). As would
be expected, the inclusion of viscosity in this way ef-
fectively damps the high-wavenumber instability of the
inviscicd problem. This use of vortex blobs is more phys-
ically realistic than the use of arbitrary, constant size
vortex blobs.

2. METHOD

We introduce the fluid vorticity w, and the 2-D
stream function ¥, defined by
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where u is the fluid velocity. The governing equations
of the fluid flow are then
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where % is the material time derivative and v is the
kinematic viscosity.

The vorticity distibution is modelled by a sum of
N vortex blobs

N
w(x) =Y C(Ix = x:(®)], a(t))ys (3)

i=1

where ((|x — xi(t)|,o(#)) is the vorticity distribution
function for the vortex blob centred at x;, o(t) is the
vortex blob ‘size’ and ; is the effective far-field vortic-
ity of the blob.

To satisfy equation (2), we use a Gaussian vortic-
ity distribution for each vortex blob, with
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and
[o(2)]? = 4wt (5)

We can solve equation (1) using the appropriate
Green’s function for the flow geometry. For unbounded
flow, this is

1
Gux—x')= 5 log |x — x'|.

The velocity field at x can then be evaluated as
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Figure 1(a). Interface shape at t=0.5.
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IMigure 1(c¢). Interface shape at t=1.5.
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The advection of the vortex blobs is approximated
by choosing the velocity at the centre of each blob to be
the velocity at which the entire blob is advected, giving
a set of 2N ODE’s

x; —x:|?
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to be solved at each time step.

The advection of the entire blob at one velocity
preserves the blobs shape, whereas in reality, the blob
would become distorted by any gradient in the veloc-
ity field. This approximation does introduce error to
the advection of each vortex blob, on the order of &2
(Leonard, 1980).

Note that the velocity field (6) has no singular
points (excepting ¢ = 0), as would a velocity field pro-
duced by point vortices. The singular point-vortex equa-
tions are regained from (7) as ¥ — 0 and the i = j terms
are excluded. The regularisation of (6) when vortex
blobs are used is the motivation behind ordinary vortex-
blob methods. The method used in this paper could in
fact be simply interpreted as an ordinary vortex-blob
method where the strength of the regularisation used in-
creases with time. This in itself would make the method
presented here preferable to ordinary vortex-blob meth-
ods, since the error introduced to the calculation as the
vortex blobs are advected is dependent on o, as men-
tioned above.

3. RESULTS

The problem investigated is the evolution of a
cylinder of fluid, initially at rest, which is released in
a uniform crossflow, as was studied by Rottman et al.
(1987). The cylinder may be represented as a circular
vortex sheet, where the vortex sheet strength is given
by the initial tangential velocity jump across the inter-
face. For a cylinder with radius R = 1.0 in a uniform x
crossflow with velocity U = (U, V) = (1.0, 0), the vortex
sheet strength is

w(e) = —2sin(e)

(8)

where e is an angular parameter 0 < ¢ < 27, We in-
troduce a Reynolds number Re = 3—’%@ — 27" and use
N = 200 vortex blobs to represent the interface. The
spectral filtering (Krasny, 1986a) is performed by set-
ting all spectral amplitudes of the interface position be-
low € = 107 to zero. The spectral amplitudes of the
interface are calculated using Fast Fourier Transforms.
Equation (7) is solved using a 4th order Runge-IKutta
method with a time step of 6t = 0.005 in a frame of
reference moving with the uniform crossflow.

Figures 1(a), (b) and (c) (straight line interpola-
tion between centres of vortex blobs) show three calcula-
tions of the interface at times# = 0.5, # = 1.0 and ¢ = 1.5
respectively. The calculations were done for Re = 10000
with and without spectral filtering, and for Re = 1000.
The Re = 1000 calculation remains smooth at all times,
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Figure 2. Interface curvature at t=1.0.

whereas the Re = 10000 calculations both develop irreg-
ularities, this effect being more severe for the calculation
which 1s not spectrally filtered. The onset of instability
at the highest wavenumber of the interface spectrum,
which results in sawtooth irregularities on the interface,
can be easily seen in figure 2, which shows the curva-
ture x of the interface versus e (the angular parameter),

0 v T T T T T T T

Re=10000

Re=10000 (spectral filter)

~----=  Re=1000 .
~==--  spectral filter threshold

-5 ¥

log,o amplitude

100

wavenumber

Figure 3(a). Interface spectrum at t=0.5.



where
_ YeTee — Telee

(w2 +y2)?
The e derivatives were calculated spectrally using Fast
Fourier Transforms. The interface develops very high

(9)

curvatures at roll-up points, and in figure 2 curvatures
with magnitudes greater than 100 have been truncated
to £100 to retain legibility.

Figures 3(a), (b) and (c) show interface spectra at
t = 0.5, t = 1.0 and t = 1.5 respectively, for the above
calculations. The growth of high-wavenumber noise in
the Re = 10000 case can be easily seen. The spectrum
of the filtered Re = 10000 calculation becomes qualita-
tively similar to the unfiltered case after all wavenum-
bers have magnitudes above the noise level, and the so-
lution becomes irregular. In the Re = 1000 case, how-
ever, high-wavenumber amplitudes are being continually
damped, resulting in a smooth solution.

Figure 4 shows the increase of the arc-length of
the interfaces in the above calculations with time. Arc-
length s is calculated as
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Figure 3(¢). Interface spectrum at t=1.5.
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Figure 4. Arc-length increase with time.
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As would be expected, high-wavenumber irregularities
lead to faster inerease of arc-length with time.

4. CONCLUSION

The method presented is one motivated by the ef-
fects of viscosity and is more physically justifiable than
arbitrary size vortex-blob methods. It is found to be
successful in calculating smooth solutions for the evo-
lution of a vortex sheet, due to the damping of high
wavenumbers in the solution spectrum.
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